@article{PfisterFringsMoeller2019, author = {Pfister, Roland and Frings, Christian and Moeller, Birte}, title = {The Role of Congruency for Distractor-Response Binding: A Caveat}, series = {Advances in Cognitive Psychologe}, volume = {15}, journal = {Advances in Cognitive Psychologe}, number = {2}, doi = {10.5709/acp-0262-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200265}, pages = {127-132}, year = {2019}, abstract = {Responding in the presence of stimuli leads to an integration of stimulus features and response features into event fles, which can later be retrieved to assist action control. This integration mechanism is not limited to target stimuli, but can also include distractors (distractor-response binding). A recurring research question is which factors determine whether or not distractors are integrated. One suggested candidate factor is target-distractor congruency: Distractor-response binding effects were reported to be stronger for congruent than for incongruent target-distractor pairs. Here, we discuss a general problem with including the factor of congruency in typical analyses used to study distractor-based binding effects. Integrating this factor leads to a confound that may explain any differences between distractor-response binding effects of congruent and incongruent distractors with a simple congruency effect. Simulation data confrmed this argument. We propose to interpret previous data cautiously and discuss potential avenues to circumvent this problem in the future.}, language = {en} } @article{BurgsdorfSlabyHandleyetal.2015, author = {Burgsdorf, Ilia and Slaby, Beate M. and Handley, Kim M. and Haber, Markus and Blom, Jochen and Marshall, Christopher W. and Gilbert, Jack A. and Hentschel, Ute and Steindler, Laura}, title = {Lifestyle Evolution in Cyanobacterial Symbionts of Sponges}, series = {mBio}, volume = {6}, journal = {mBio}, number = {3}, doi = {10.1128/mBio.00391-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143117}, pages = {e00391-15}, year = {2015}, abstract = {The "Candidatus Synechococcus spongiarum" group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99\%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a "Ca. Synechococcus spongiarum" group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, "Ca. Synechococcus spongiarum" includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of "Ca. Synechococcus spongiarum," each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of "Ca. Synechococcus spongiarum" members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the "Ca. Synechococcus spongiarum" group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. IMPORTANCE While the Synechococcus/Prochlorococcus-type cyanobacteria are widely distributed in the world's oceans, a subgroup has established its niche within marine sponge tissues. Recently, the first genome of sponge-associated cyanobacteria, " Candidatus Synechococcus spongiarum," was described. The sequencing of three representatives of different clades within this cyanobacterial group has enabled us to investigate intraspecies diversity, as well as to give a more comprehensive understanding of the common symbiotic features that adapt "Ca. Synechococcus spongiarum" to its life within the sponge host.}, language = {en} }