@article{ZirkelCecilSchaeferetal.2012, author = {Zirkel, J. and Cecil, A. and Sch{\"a}fer, F. and Rahlfs, S. and Ouedraogo, A. and Xiao, K. and Sawadogo, S. and Coulibaly, B. and Becker, K. and Dandekar, T.}, title = {Analyzing Thiol-Dependent Redox Networks in the Presence of Methylene Blue and Other Antimalarial Agents with RT-PCR-Supported in silico Modeling}, series = {Bioinformatics and Biology Insights}, volume = {6}, journal = {Bioinformatics and Biology Insights}, doi = {10.4137/BBI.S10193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123751}, pages = {287-302}, year = {2012}, abstract = {BACKGROUND: In the face of growing resistance in malaria parasites to drugs, pharmacological combination therapies are important. There is accumulating evidence that methylene blue (MB) is an effective drug against malaria. Here we explore the biological effects of both MB alone and in combination therapy using modeling and experimental data. RESULTS: We built a model of the central metabolic pathways in P. falciparum. Metabolic flux modes and their changes under MB were calculated by integrating experimental data (RT-PCR data on mRNAs for redox enzymes) as constraints and results from the YANA software package for metabolic pathway calculations. Several different lines of MB attack on Plasmodium redox defense were identified by analysis of the network effects. Next, chloroquine resistance based on pfmdr/and pfcrt transporters, as well as pyrimethamine/sulfadoxine resistance (by mutations in DHF/DHPS), were modeled in silico. Further modeling shows that MB has a favorable synergism on antimalarial network effects with these commonly used antimalarial drugs. CONCLUSIONS: Theoretical and experimental results support that methylene blue should, because of its resistance-breaking potential, be further tested as a key component in drug combination therapy efforts in holoendemic areas.}, language = {en} } @article{DanhofSchrederStrifleretal.2015, author = {Danhof, Sophia and Schreder, Martin and Strifler, Susanne and Einsele, Hermann and Knop, Stefan}, title = {Long-Term Disease Control by Pomalidomide-/Dexamethasone-Based Therapy in a Patient with Advanced Multiple Myeloma: A Case Report and Review of the Literature}, series = {Case Reports in Oncology}, volume = {8}, journal = {Case Reports in Oncology}, number = {1}, doi = {10.1159/000381983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126093}, pages = {189-195}, year = {2015}, abstract = {Background: Therapy for multiple myeloma (MM) has substantially improved in the era of immunomodulatory drugs and bortezomib. However, the prognosis of patients with progressive disease despite treatment with these 'novel agents' remains poor. Recently, pomalidomide was approved in this setting, but a median progression-free survival of <4 months still leaves room for improvement. Pomalidomide-based combination therapies are currently under investigation, but data on long-term treatment are lacking. Case Report: We present the case of a 68-year-old woman with refractory MM who received pomalidomide in combination with various drugs including anthracyclines, alkylators and proteasome inhibitors. Initially, major hematological toxicities and infectious complications including a hepatitis B virus reactivation were encountered. With careful dose adjustments and selection of combination partners, pomalidomide treatment was maintained for over 4 years and led to a sustained partial remission. In particular, the well-tolerated regimen of bortezomib, cyclophosphamide and dexamethasone together with pomalidomide was administered for >30 cycles. Conclusion: This case illustrates the value of an individualized approach to myeloma care given an increasing availability of 'novel agents'. Tailored treatment using these drugs as a backbone is essential to achieve long-lasting responses and minimize side effects.}, language = {en} } @article{PatilGentschevNolteetal.2012, author = {Patil, Sandeep S. and Gentschev, Ivaylo and Nolte, Ingo and Ogilvie, Gregory and Szalay, Aladar A.}, title = {Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75128}, year = {2012}, abstract = {Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.}, subject = {Medizin}, language = {en} }