@article{AppelMarkerMara2019, author = {Appel, Markus and Marker, Caroline and Mara, Martina}, title = {Otakuism and the appeal of sex robots}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, number = {569}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.00569}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195893}, year = {2019}, abstract = {Social robots are becoming increasingly prevalent in everyday life and sex robots are a sub-category of especially high public interest and controversy. Starting from the concept of the otaku, a term from Japanese youth culture that describes secluded persons with a high affinity for fictional manga characters, we examine individual differences behind sex robot appeal (anime and manga fandom, interest in Japanese culture, preference for indoor activities, shyness). In an online-experiment, 261 participants read one out of three randomly assigned descriptions of future technologies (sex robot, nursing robot, genetically modified organism) and reported on their overall evaluation, eeriness, and contact/purchase intentions. Higher anime and manga fandom was associated with higher appeal for all three future technologies. For our male subsample, sex robots and GMOs stood out as shyness yielded a particularly strong relationship to contact/purchase intentions for these new technologies.}, language = {en} } @article{ReulChristHarteltetal.2019, author = {Reul, Christian and Christ, Dennis and Hartelt, Alexander and Balbach, Nico and Wehner, Maximilian and Springmann, Uwe and Wick, Christoph and Grundig, Christine and B{\"u}ttner, Andreas and Puppe, Frank}, title = {OCR4all—An open-source tool providing a (semi-)automatic OCR workflow for historical printings}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {22}, issn = {2076-3417}, doi = {10.3390/app9224853}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193103}, pages = {4853}, year = {2019}, abstract = {Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years, great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout analysis and segmentation, character recognition, and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper, we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. While a variety of materials can already be processed fully automatically, books with more complex layouts require manual intervention by the users. This is mostly due to the fact that the required ground truth for training stronger mixed models (for segmentation, as well as text recognition) is not available, yet, neither in the desired quantity nor quality. To deal with this issue in the short run, OCR4all offers a comfortable GUI that allows error corrections not only in the final output, but already in early stages to minimize error propagations. In the long run, this constant manual correction produces large quantities of valuable, high quality training material, which can be used to improve fully automatic approaches. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. During experiments, the fully automated application on 19th Century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. Furthermore, on very complex early printed books, even users with minimal or no experience were able to capture the text with manageable effort and great quality, achieving excellent Character Error Rates (CERs) below 0.5\%. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.}, language = {en} } @article{DuanNagelGao2019, author = {Duan, Xiaodong and Nagel, Georg and Gao, Shiqiang}, title = {Mutated channelrhodopsins with increased sodium and calcium permeability}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {4}, issn = {2076-3417}, doi = {10.3390/app9040664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197435}, pages = {664}, year = {2019}, abstract = {(1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation.}, language = {en} } @article{WallmannSperlichHoffmannSaldittetal.2019, author = {Wallmann-Sperlich, Birgit and Hoffmann, Sophie and Salditt, Anne and Bipp, Tanja and Froboese, Ingo}, title = {Moving to an "active" biophilic designed office workplace: a pilot study about the effects on sitting time and sitting habits of office-based workers}, series = {International Journal of Environmental Research and Public Health}, volume = {16}, journal = {International Journal of Environmental Research and Public Health}, number = {9}, issn = {1660-4601}, doi = {10.3390/ijerph16091559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197371}, pages = {1559}, year = {2019}, abstract = {Promising initial insights show that offices designed to permit physical activity (PA) may reduce workplace sitting time. Biophilic approaches are intended to introduce natural surroundings into the workplace, and preliminary data show positive effects on stress reduction and elevated productivity within the workplace. The primary aim of this pilot study was to analyze changes in workplace sitting time and self-reported habit strength concerning uninterrupted sitting and PA during work, when relocating from a traditional office setting to "active" biophilic-designed surroundings. The secondary aim was to assess possible changes in work-associated factors such as satisfaction with the office environment, work engagement, and work performance, among office staff. In a pre-post designed field study, we collected data through an online survey on health behavior at work. Twelve participants completed the survey before (one-month pre-relocation, T1) and twice after the office relocation (three months (T2) and seven months post-relocation (T3)). Standing time per day during office hours increased from T1 to T3 by about 40 min per day (p < 0.01). Other outcomes remained unaltered. The results suggest that changing office surroundings to an active-permissive biophilic design increased standing time during working hours. Future larger-scale controlled studies are warranted to investigate the influence of office design on sitting time and work-associated factors during working hours in depth.}, language = {en} } @article{DjebkoPuppeKayal2019, author = {Djebko, Kirill and Puppe, Frank and Kayal, Hakan}, title = {Model-based fault detection and diagnosis for spacecraft with an application for the SONATE triple cube nano-satellite}, series = {Aerospace}, volume = {6}, journal = {Aerospace}, number = {10}, issn = {2226-4310}, doi = {10.3390/aerospace6100105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198836}, pages = {105}, year = {2019}, abstract = {The correct behavior of spacecraft components is the foundation of unhindered mission operation. However, no technical system is free of wear and degradation. A malfunction of one single component might significantly alter the behavior of the whole spacecraft and may even lead to a complete mission failure. Therefore, abnormal component behavior must be detected early in order to be able to perform counter measures. A dedicated fault detection system can be employed, as opposed to classical health monitoring, performed by human operators, to decrease the response time to a malfunction. In this paper, we present a generic model-based diagnosis system, which detects faults by analyzing the spacecraft's housekeeping data. The observed behavior of the spacecraft components, given by the housekeeping data is compared to their expected behavior, obtained through simulation. Each discrepancy between the observed and the expected behavior of a component generates a so-called symptom. Given the symptoms, the diagnoses are derived by computing sets of components whose malfunction might cause the observed discrepancies. We demonstrate the applicability of the diagnosis system by using modified housekeeping data of the qualification model of an actual spacecraft and outline the advantages and drawbacks of our approach.}, language = {en} } @article{ElmaidomyMohammedHassanetal.2019, author = {Elmaidomy, Abeer H. and Mohammed, Rabab and Hassan, Hossam M. and Owis, Asmaa I. and Rateb, Mostafa E. and Khanfar, Mohammad A. and Krischke, Markus and Mueller, Martin J. and Abdelmohsen, Usama Ramadan}, title = {Metabolomic profiling and cytotoxic tetrahydrofurofuran lignans investigations from Premna odorata Blanco}, series = {Metabolites}, volume = {9}, journal = {Metabolites}, number = {10}, issn = {2218-1989}, doi = {10.3390/metabo9100223}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193187}, pages = {223}, year = {2019}, abstract = {Metabolomic profiling of different Premna odorata Blanco (Lamiaceae) organs, bark, wood, young stems, flowers, and fruits dereplicated 20, 20, 10, 20, and 20 compounds, respectively, using LC-HRESIMS. The identified metabolites (1-34) belonged to different chemical classes, including iridoids, flavones, phenyl ethanoids, and lignans. A phytochemical investigation of P. odorata bark afforded one new tetrahydrofurofuran lignan, 4β-hydroxyasarinin 35, along with fourteen known compounds. The structure of the new compound was confirmed using extensive 1D and 2D NMR, and HRESIMS analyses. A cytotoxic investigation of compounds 35-38 against the HL-60, HT-29, and MCF-7 cancer cell lines, using the MTT assay showed that compound 35 had cytotoxic effects against HL-60 and MCF-7 with IC50 values of 2.7 and 4.2 µg/mL, respectively. A pharmacophore map of compounds 35 showed two hydrogen bond acceptor (HBA) aligning the phenoxy oxygen atoms of benzodioxole moieties, two aromatic ring features vectored on the two phenyl rings, one hydrogen bond donor (HBD) feature aligning the central hydroxyl group and thirteen exclusion spheres which limit the boundaries of sterically inaccessible regions of the target's active site.}, language = {en} } @article{TiwarekarFehrholzSchneiderSchaulies2019, author = {Tiwarekar, Vishakha and Fehrholz, Markus and Schneider-Schaulies, J{\"u}rgen}, title = {KDELR2 competes with measles virus envelope proteins for cellular chaperones reducing their chaperone-mediated cell surface transport}, series = {Viruses}, volume = {11}, journal = {Viruses}, number = {1}, issn = {1999-4915}, doi = {10.3390/v11010027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197468}, pages = {27}, year = {2019}, abstract = {Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers.}, language = {en} } @article{Menke2019, author = {Menke, Andreas}, title = {Is the HPA axis as target for depression outdated, or is there a new hope?}, series = {Frontiers in Psychiatry}, volume = {10}, journal = {Frontiers in Psychiatry}, number = {101}, issn = {1664-0640}, doi = {10.3389/fpsyt.2019.00101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195780}, year = {2019}, abstract = {Major depressive disorder (MDD) is a very common stress-related mental disorder that carries a huge burden for affected patients and the society. It is associated with a high mortality that derives from suicidality and the development of serious medical conditions such as heart diseases, diabetes, and stroke. Although a range of effective antidepressants are available, more than 50\% of the patients do not respond to the first treatment they are prescribed and around 30\% fail to respond even after several treatment attempts. The heterogeneous condition of MDD, the lack of biomarkers matching patients with the right treatments and the situation that almost all available drugs are only targeting the serotonin, norepinephrine, or dopamine signaling, without regulating other potentially dysregulated systems may explain the insufficient treatment status. The hypothalamic-pituitary-adrenal (HPA) axis is one of these other systems, there is numerous and robust evidence that it is implicated in MDD and other stress-related conditions, but up to date there is no specific drug targeting HPA axis components that is approved and no test that is routinely used in the clinical setting identifying patients for such a specific treatment. Is there still hope after these many years for a breakthrough of agents targeting the HPA axis? This review will cover tests detecting altered HPA axis function and the specific treatment options such as glucocorticoid receptor (GR) antagonists, corticotropin-releasing hormone 1 (CRH1) receptor antagonists, tryptophan 2,3-dioxygenase (TDO) inhibitors and FK506 binding protein 5 (FKBP5) receptor antagonists.}, language = {en} } @article{OdorferHomolaReichetal.2019, author = {Odorfer, Thorsten M. and Homola, Gy{\"o}rgy A. and Reich, Martin M. and Volkmann, Jens and Zeller, Daniel}, title = {Increased finger-tapping related cerebellar activation in cervical dystonia, enhanced by transcranial stimulation: an indicator of compensation?}, series = {Frontiers in Neurology}, volume = {10}, journal = {Frontiers in Neurology}, number = {231}, issn = {1664-2295}, doi = {10.3389/fneur.2019.00231}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196249}, year = {2019}, abstract = {Background: Cervical dystonia is a movement disorder causing abnormal postures and movements of the head. While the exact pathophysiology of cervical dystonia has not yet been fully elucidated, a growing body of evidence points to the cerebellum as an important node. Methods: Here, we examined the impact of cerebellar interference by transcranial magnetic stimulation on finger-tapping related brain activation and neurophysiological measures of cortical excitability and inhibition in cervical dystonia and controls. Bilateral continuous theta-burst stimulation was used to modulate cerebellar cortical excitability in 16 patients and matched healthy controls. In a functional magnetic resonance imaging arm, data were acquired during simple finger tapping before and after cerebellar stimulation. In a neurophysiological arm, assessment comprised motor-evoked potentials amplitude and cortical silent period duration. Theta-burst stimulation over the dorsal premotor cortex and sham stimulation (neurophysiological arm only) served as control conditions. Results: At baseline, finger tapping was associated with increased activation in the ipsilateral cerebellum in patients compared to controls. Following cerebellar theta-burst stimulation, this pattern was even more pronounced, along with an additional movement-related activation in the contralateral somatosensory region and angular gyrus. Baseline motor-evoked potential amplitudes were higher and cortical silent period duration shorter in patients compared to controls. After cerebellar theta-burst stimulation, cortical silent period duration increased significantly in dystonia patients. Conclusion: We conclude that in cervical dystonia, finger movements—though clinically non-dystonic—are associated with increased activation of the lateral cerebellum, possibly pointing to general motor disorganization, which remains subclinical in most body regions. Enhancement of this activation together with an increase of silent period duration by cerebellar continuous theta-burst stimulation may indicate predominant disinhibitory effects on Purkinje cells, eventually resulting in an inhibition of cerebello-thalamocortical circuits.}, language = {en} } @article{WeberLorenzHemmings2019, author = {Weber, Silvana and Lorenz, Christopher and Hemmings, Nicola}, title = {Improving stress and positive mental health at work via an app-based intervention: a large-scale multi-center randomized control trial}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, number = {2745}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.02745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-194337}, year = {2019}, abstract = {Mobile health interventions (i.e., "apps") are used to address mental health and are an increasingly popular method available to both individuals and organizations to manage workplace stress. However, at present, there is a lack of research on the effectiveness of mobile health interventions in counteracting or improving stress-related health problems, particularly in naturalistic, non-clinical settings. This project aimed at validating a mobile health intervention (which is theoretically grounded in the Job Demands-Resources Model) in preventing and managing stress at work. Within the mobile health intervention, employees make an evidence-based, personalized, psycho-educational journey to build further resources, and thus, reduce stress. A large-scale longitudinal randomized control trial, conducted with six European companies over 6 weeks using four measurement points, examined indicators of mental health via measures of stress, wellbeing, resilience, and sleep. The data were analyzed by means of hierarchical multilevel models for repeated measures, including both self-report measures and user behavior metrics from the app. The results (n = 532) suggest that using the mobile health intervention (vs. waitlist control group) significantly improved stress and wellbeing over time. Higher engagement in the intervention increased the beneficial effects. Additionally, use of the sleep tracking function led to an improvement in sleeping troubles. The intervention had no effects on measures of physical health or social community at work. Theoretical and practical implications of these findings are discussed, focusing on benefits and challenges of using technological solutions for organizations to support individuals' mental health in the workplace.}, language = {en} }