@article{LoefflerWirthKreuzHoppetal.2019, author = {Loeffler-Wirth, Henry and Kreuz, Markus and Hopp, Lydia and Arakelyan, Arsen and Haake, Andrea and Cogliatti, Sergio B. and Feller, Alfred C. and Hansmann, Martin-Leo and Lenze, Dido and M{\"o}ller, Peter and M{\"u}ller-Hermelink, Hans Konrad and Fortenbacher, Erik and Willscher, Edith and Ott, German and Rosenwald, Andreas and Pott, Christiane and Schwaenen, Carsten and Trautmann, Heiko and Wessendorf, Swen and Stein, Harald and Szczepanowski, Monika and Tr{\"u}mper, Lorenz and Hummel, Michael and Klapper, Wolfram and Siebert, Reiner and Loeffler, Markus and Binder, Hans}, title = {A modular transcriptome map of mature B cell lymphomas}, series = {Genome Medicine}, volume = {11}, journal = {Genome Medicine}, doi = {10.1186/s13073-019-0637-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237262}, year = {2019}, abstract = {Background Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt's lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma. Methods We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and clinical characteristics. Results We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that of Burkitt's lymphoma and particularly on 'double-hit' MYC and BCL2 transformed lymphomas. Conclusions The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and future studies on lymphomas and on other cancer entities.}, language = {en} } @article{NeugebauerSchneiderKollmar2019, author = {Neugebauer, Hermann and Schneider, Hauke and Kollmar, Rainer}, title = {Letter by Neugebauer et al. regarding article "Hypothermia after decompressive hemicraniectomy in treatment of malignant middle cerebral artery stroke: comment on the randomized clinical trial"}, series = {Critical Care}, volume = {23}, journal = {Critical Care}, doi = {10.1186/s13054-019-2600-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232268}, year = {2019}, abstract = {No abstract available.}, language = {en} } @article{KoenigPechmannThieleetal.2019, author = {K{\"o}nig, Kirsten and Pechmann, Astrid and Thiele, Simone and Walter, Maggie C. and Schorling, David and Tassoni, Adrian and Lochm{\"u}ller, Hanns and M{\"u}ller-Reible, Clemens and Kirschner, Janbernd}, title = {De-duplicating patient records from three independent data sources reveals the incidence of rare neuromuscular disorders in Germany}, series = {Orphanet Journal of Rare Diseases}, volume = {14}, journal = {Orphanet Journal of Rare Diseases}, doi = {10.1186/s13023-019-1125-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222807}, year = {2019}, abstract = {Background Estimation of incidence in rare diseases is often challenging due to unspecific and incomplete coding and recording systems. Patient- and health care provider-driven data collections are held with different organizations behind firewalls to protect the privacy of patients. They tend to be fragmented, incomplete and their aggregation leads to further inaccuracies, as the duplicated records cannot easily be identified. We here report about a novel approach to evaluate the incidences of Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) in Germany. Methods We performed a retrospective epidemiological study collecting data from patients with dystrophinopathies (DMD and Becker muscular dystrophy) and SMA born between 1995 and 2018. We invited all neuromuscular centers, genetic institutes and the patient registries for DMD and SMA in Germany to participate in the data collection. A novel web-based application for data entry was developed converting patient identifying information into a hash code. Duplicate entries were reliably allocated to the distinct patient. Results We collected 5409 data entries in our web-based database representing 1955 distinct patients with dystrophinopathies and 1287 patients with SMA. 55.0\% of distinct patients were found in one of the 3 data sources only, while 32.0\% were found in 2, and 13.0\% in all 3 data sources. The highest number of SMA patients was reported by genetic testing laboratories, while for DMD the highest number was reported by the clinical specialist centers. After the removal of duplicate records, the highest yearly incidence for DMD was calculated as 2.57:10,000 in 2001 and the highest incidence for SMA as 1.36:10,000 in 2014. Conclusion With our novel approach (compliant with data protection regulations), we were able to identify unique patient records and estimate the incidence of DMD and SMA in Germany combining and de-duplicating data from patient registries, genetic institutes, and clinical care centers. Although we combined three different data sources, an unknown number of patients might not have been reported by any of these sources. Therefore, our results reflect the minimal incidence of these diseases.}, language = {en} } @article{LeistnerSommerKanofskyetal.2019, author = {Leistner, Marcus and Sommer, Stefanie and Kanofsky, Peer and Leyh, Rainer and Sommer, Sebastian-Patrick}, title = {Ischemia time impacts on respiratory chain functions and Ca\(^{2+}\)-handling of cardiac subsarcolemmal mitochondria subjected to ischemia reperfusion injury}, series = {Journal of Cardiothoracic Surgery}, volume = {14}, journal = {Journal of Cardiothoracic Surgery}, doi = {10.1186/s13019-019-0911-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236455}, year = {2019}, abstract = {Background Mitochondrial impairment can result from myocardial ischemia reperfusion injury (IR). Despite cardioplegic arrest, IR-associated cardiodepression is a major problem in heart surgery. We determined the effect of increasing ischemia time on the respiratory chain (RC) function, the inner membrane polarization and Ca\(^{2+}\) homeostasis of rat cardiac subsarcolemmal mitochondria (SSM). Methods Wistar rat hearts were divided into 4 groups of stop-flow induced warm global IR using a pressure-controlled Langendorff system: 0, 15, 30 and 40 min of ischemia with 30 min of reperfusion, respectively. Myocardial contractility was determined from left ventricular pressure records (dP/dt, dPmax) with an intraventricular balloon. Following reperfusion, SSM were isolated and analyzed regarding electron transport chain (ETC) coupling by polarography (Clark-Type electrode), membrane polarization (JC1 fluorescence) and Ca2+-handling in terms of Ca\(^{2+}\)-induced swelling and Ca\(^{2+}\)-uptake/release (Calcium Green-5 N® fluorescence). Results LV contractility and systolic pressure during reperfusion were impaired by increasing ischemic times. Ischemia reduced ETC oxygen consumption in IR40/30 compared to IR0/30 at complex I-V (8.1 ± 1.2 vs. 18.2 ± 2.0 nmol/min) and II-IV/V (16.4 ± 2.6/14.8 ± 2.3 vs. 2.3 ± 0.6 nmol/min) in state 3 respiration (p < 0.01). Relative membrane potential revealed a distinct hyperpolarization in IR30/30 and IR40/30 (171.5 ± 17.4\% and 170.9 ± 13.5\%) compared to IR0/30 (p < 0.01), wearing off swiftly after CCCP-induced uncoupling. Excess mitochondrial permeability transition pore (mPTP)-gated Ca\(^{2+}\)-induced swelling was recorded in all groups and was most pronounced in IR40/30. Pyruvate addition for mPTP blocking strongly reduced SSM swelling in IR40/30 (relative AUC, ± pyruvate; IR0/30: 1.00 vs. 0.61, IR15/30: 1.68 vs. 1.00, IR30/30: 1.42 vs. 0.75, IR40/30: 1.97 vs. 0.85; p < 0.01). Ca2+-uptake remained unaffected by previous IR. Though Ca\(^{2+}\)-release was delayed for ≥30 min of ischemia (p < 0.01), Ca\(^{2+}\) retention was highest in IR15/30 (RFU; IR0/30: 6.3 ± 3.6, IR 15/30 42.9 ± 5.0, IR30/30 15.9 ± 3.8, IR40/30 11.5 ± 6.6; p ≤ 0.01 for IR15/30 against all other groups). Conclusions Ischemia prolongation in IR injury gradually impaired SSM in terms of respiratory chain function and Ca\(^{2+}\)-homeostasis. Membrane hyperpolarization appears to be responsible for impaired Ca2+-cycling and ETC function. Ischemia time should be considered an important factor influencing IR experimental data on subsarcolemmal mitochondria. Periods of warm global ischemia should be minimized during cardiac surgery to avoid excessive damage to SSMs.}, language = {en} } @article{RuboGamer2019, author = {Rubo, Marius and Gamer, Matthias}, title = {Visuo-tactile congruency influences the body schema during full body ownership illusion}, series = {Consciousness and Cognition}, volume = {73}, journal = {Consciousness and Cognition}, doi = {10.1016/j.concog.2019.05.006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227095}, pages = {UNSP 102758, 1-14}, year = {2019}, abstract = {Previous research showed that full body ownership illusions in virtual reality (VR) can be robustly induced by providing congruent visual stimulation, and that congruent tactile experiences provide a dispensable extension to an already established phenomenon. Here we show that visuo-tactile congruency indeed does not add to already high measures for body ownership on explicit measures, but does modulate movement behavior when walking in the laboratory. Specifically, participants who took ownership over a more corpulent virtual body with intact visuo-tactile congruency increased safety distances towards the laboratory's walls compared to participants who experienced the same illusion with deteriorated visuo-tactile congruency. This effect is in line with the body schema more readily adapting to a more corpulent body after receiving congruent tactile information. We conclude that the action-oriented, unconscious body schema relies more heavily on tactile information compared to more explicit aspects of body ownership.}, language = {en} } @article{MinevLanderFelleretal.2019, author = {Minev, Boris R. and Lander, Elliot and Feller, John F. and Berman, Mark and Greenwood, Bernadette M. and Minev, Ivelina and Santidrian, Antonio F. and Nguyen, Duong and Draganov, Dobrin and Killinc, Mehmet O. and Vyalkova, Anna and Kesari, Santosh and McClay, Edward and Carabulea, Gabriel and Marincola, Francesco M. and Butterfield, Lisa H. and Szalay, Aladar A.}, title = {First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, doi = {10.1186/s12967-019-2011-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224105}, year = {2019}, abstract = {Background ACAM2000, a thymidine kinase (TK)-positive strain of vaccinia virus, is the current smallpox vaccine in the US. Preclinical testing demonstrated potent oncolytic activity of ACAM2000 against several tumor types. This Phase I clinical trial of ACAM2000 delivered by autologous adipose stromal vascular fraction (SVF) cells was conducted to determine the safety and feasibility of such a treatment in patients with advanced solid tumors or acute myeloid leukemia (AML). Methods Twenty-four patients with solid tumors and two patients with AML participated in this open-label, non-randomized dose-escalation trial. All patients were treated with SVF derived from autologous fat and incubated for 15 min to 1 h with ACAM2000 before application. Six patients received systemic intravenous application only, one patient received intra-tumoral application only, 15 patients received combination intravenous with intra-tumoral deployment, 3 patients received intravenous and intra-peritoneal injection and 1 patient received intravenous, intra-tumoral and intra-peritoneal injections. Safety at each dose level of ACAM2000 (1.4 × 106 plaque-forming units (PFU) to 1.8 × 107 PFU) was evaluated. Blood samples for PK assessments, flow cytometry and cytokine analysis were collected at baseline and 1 min, 1 h, 1 day, 1 week, 1 month, 3 months and 6 months following treatment. Results No serious toxicities (> grade 2) were reported. Seven patients reported an adverse event (AE) in this study: self-limiting skin rashes, lasting 7 to 18 days—an expected adverse reaction to ACAM2000. No AEs leading to study discontinuation were reported. Viral DNA was detected in all patients' blood samples immediately following treatment. Interestingly, in 8 patients viral DNA disappeared 1 day and re-appeared 1 week post treatment, suggesting active viral replication at tumor sites, and correlating with longer survival of these patients. No major increase in cytokine levels or correlation between cytokine levels and skin rashes was noted. We were able to assess some initial efficacy signals, especially when the ACAM2000/SVF treatment was combined with checkpoint inhibition. Conclusions Treatment with ACAM2000/SVF in patients with advanced solid tumors or AML is safe and well tolerated, and several patients had signals of an anticancer effect. These promising initial clinical results merit further investigation of therapeutic utility. Trial registration Retrospectively registered (ISRCTN\#10201650) on October 22, 2018.}, language = {en} } @article{DraganovSantidrianMinevetal.2019, author = {Draganov, Dobrin D. and Santidrian, Antonio F. and Minev, Ivelina and Duong, Nguyen and Kilinc, Mehmet Okyay and Petrov, Ivan and Vyalkova, Anna and Lander, Elliot and Berman, Mark and Minev, Boris and Szalay, Aladar A.}, title = {Delivery of oncolytic vaccinia virus by matched allogeneic stem cells overcomes critical innate and adaptive immune barriers}, series = {Journal of Translational Medicine}, volume = {17}, journal = {Journal of Translational Medicine}, issn = {100}, doi = {10.1186/s12967-019-1829-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226312}, year = {2019}, abstract = {Background Previous studies have identified IFNγ as an important early barrier to oncolytic viruses including vaccinia. The existing innate and adaptive immune barriers restricting oncolytic virotherapy, however, can be overcome using autologous or allogeneic mesenchymal stem cells as carrier cells with unique immunosuppressive properties. Methods To test the ability of mesenchymal stem cells to overcome innate and adaptive immune barriers and to successfully deliver oncolytic vaccinia virus to tumor cells, we performed flow cytometry and virus plaque assay analysis of ex vivo co-cultures of stem cells infected with vaccinia virus in the presence of peripheral blood mononuclear cells from healthy donors. Comparative analysis was performed to establish statistically significant correlations and to evaluate the effect of stem cells on the activity of key immune cell populations. Results Here, we demonstrate that adipose-derived stem cells (ADSCs) have the potential to eradicate resistant tumor cells through a combination of potent virus amplification and sensitization of the tumor cells to virus infection. Moreover, the ADSCs demonstrate ability to function as a virus-amplifying Trojan horse in the presence of both autologous and allogeneic human PBMCs, which can be linked to the intrinsic immunosuppressive properties of stem cells and their unique potential to overcome innate and adaptive immune barriers. The clinical application of ready-to-use ex vivo expanded allogeneic stem cell lines, however, appears significantly restricted by patient-specific allogeneic differences associated with the induction of potent anti-stem cell cytotoxic and IFNγ responses. These allogeneic responses originate from both innate (NK)- and adaptive (T)- immune cells and might compromise therapeutic efficacy through direct elimination of the stem cells or the induction of an anti-viral state, which can block the potential of the Trojan horse to amplify and deliver vaccinia virus to the tumor. Conclusions Overall, our findings and data indicate the feasibility to establish simple and informative assays that capture critically important patient-specific differences in the immune responses to the virus and stem cells, which allows for proper patient-stem cell matching and enables the effective use of off-the-shelf allogeneic cell-based delivery platforms, thus providing a more practical and commercially viable alternative to the autologous stem cell approach.}, language = {en} } @article{BartelPeinPopperetal.2019, author = {Bartel, Karin and Pein, Helmut and Popper, Bastian and Schmitt, Sabine and Janaki-Raman, Sudha and Schulze, Almut and Lengauer, Florian and Koeberle, Andreas and Werz, Oliver and Zischka, Hans and M{\"u}ller, Rolf and Vollmar, Angelika M. and Schwarzenberg, Karin von}, title = {Connecting lysosomes and mitochondria - a novel role for lipid metabolism in cancer cell death}, series = {Cell Communication and Signaling}, volume = {17}, journal = {Cell Communication and Signaling}, doi = {10.1186/s12964-019-0399-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221524}, year = {2019}, abstract = {Background The understanding of lysosomes has been expanded in recent research way beyond their view as cellular trash can. Lysosomes are pivotal in regulating metabolism, endocytosis and autophagy and are implicated in cancer. Recently it was discovered that the lysosomal V-ATPase, which is known to induce apoptosis, interferes with lipid metabolism in cancer, yet the interplay between these organelles is poorly understood. Methods LC-MS/MS analysis was performed to investigate lipid distribution in cells. Cell survival and signaling pathways were analyzed by means of cell biological methods (qPCR, Western Blot, flow cytometry, CellTiter-Blue). Mitochondrial structure was analyzed by confocal imaging and electron microscopy, their function was determined by flow cytometry and seahorse measurements. Results Our data reveal that interfering with lysosomal function changes composition and subcellular localization of triacylglycerids accompanied by an upregulation of PGC1α and PPARα expression, master regulators of energy and lipid metabolism. Furthermore, cardiolipin content is reduced driving mitochondria into fission, accompanied by a loss of membrane potential and reduction in oxidative capacity, which leads to a deregulation in cellular ROS and induction of mitochondria-driven apoptosis. Additionally, cells undergo a metabolic shift to glutamine dependency, correlated with the fission phenotype and sensitivity to lysosomal inhibition, most prominent in Ras mutated cells. Conclusion This study sheds mechanistic light on a largely uninvestigated triangle between lysosomes, lipid metabolism and mitochondrial function. Insight into this organelle crosstalk increases our understanding of mitochondria-driven cell death. Our findings furthermore provide a first hint on a connection of Ras pathway mutations and sensitivity towards lysosomal inhibitors.}, language = {en} } @article{RoedelTessmarGrolletal.2019, author = {R{\"o}del, Michaela and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Gbureck, Uwe}, title = {Tough and Elastic alpha-Tricalcium Phosphate Cement Composites with Degradable PEG-Based Cross-Linker}, series = {Materials}, volume = {12}, journal = {Materials}, number = {53}, doi = {10.3390/ma12010053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226437}, pages = {1-20}, year = {2019}, abstract = {Dual setting cements composed of an in situ forming hydrogel and a reactive mineral phase combine high compressive strength of the cement with sufficient ductility and bending strength of the polymeric network. Previous studies were focused on the modification with non-degradable hydrogels based on 2-hydroxyethyl methacrylate (HEMA). Here, we describe the synthesis of suitable triblock degradable poly(ethylene glycol)-poly(lactide) (PEG-PLLA) cross-linker to improve the resorption capacity of such composites. A study with four different formulations was established. As reference, pure hydroxyapatite (HA) cements and composites with 40 wt\% HEMA in the liquid cement phase were produced. Furthermore, HEMA was modified with 10 wt\% of PEG-PLLA cross-linker or a test series containing only 25\% cross-linker was chosen for composites with a fully degradable polymeric phase. Hence, we developed suitable systems with increased elasticity and 5-6 times higher toughn ess values in comparison to pure inorganic cement matrix. Furthermore, conversion rate from alpha-tricalcium phosphate (alpha-TCP) to HA was still about 90\% for all composite formulations, whereas crystal size decreased. Based on this material development and advancement for a dual setting system, we managed to overcome the drawback of brittleness for pure calcium phosphate cements.}, language = {en} } @article{SepahiFaustSturmetal.2019, author = {Sepahi, Ilnaz and Faust, Ulrike and Sturm, Marc and Bosse, Kristin and Kehrer, Martin and Heinrich, Tilman and Grundman-Hauser, Kathrin and Bauer, Peter and Ossowski, Stephan and Susak, Hana and Varon, Raymonda and Schr{\"o}ck, Evelin and Niederacher, Dieter and Auber, Bernd and Sutter, Christian and Arnold, Norbert and Hahnen, Eric and Dworniczak, Bernd and Wang-Gorke, Shan and Gehrig, Andrea and Weber, Bernhard H. F. and Engel, Christoph and Lemke, Johannes R. and Hartkopf, Andreas and Huu Phuc, Nguyen and Riess, Olaf and Schroeder, Christopher}, title = {Investigating the effects of additional truncating variants in DNA-repair genes on breast cancer risk in BRCA1-positive women}, series = {BMC Cancer}, volume = {19}, journal = {BMC Cancer}, doi = {10.1186/s12885-019-5946-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237676}, year = {2019}, abstract = {Background Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72\%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. Methods We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. Results Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2\%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6\%; 95\%-CI 24.7 - 47.7\%) compared to 16 women of controls (26.7\%; 95\%-CI 16.1 to 39.7\%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95\%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. Conclusions To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.}, language = {en} }