@article{WermkeRobbSchulter2021, author = {Wermke, Kathleen and Robb, Michael P. and Schulter, Philip J.}, title = {Melody complexity of infants' cry and non-cry vocalisations increases across the first six months}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, issn = {2045-2322}, doi = {10.1038/s41598-021-83564-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258669}, year = {2021}, abstract = {In early infancy, melody provides the most salient prosodic element for language acquisition and there is huge evidence for infants' precocious aptitudes for musical and speech melody perception. Yet, a lack of knowledge remains with respect to melody patterns of infants' vocalisations. In a search for developmental regularities of cry and non-cry vocalisations and for building blocks of prosody (intonation) over the first 6 months of life, more than 67,500 melodies (fundamental frequency contours) of 277 healthy infants from monolingual German families were quantitatively analysed. Based on objective criteria, vocalisations with well-identifiable melodies were grouped into those exhibiting a simple (single-arc) or complex (multiple-arc) melody pattern. Longitudinal analysis using fractional polynomial multi-level mixed effects logistic regression models were applied to these patterns. A significant age (but not sex) dependent developmental pattern towards more complexity was demonstrated in both vocalisation types over the observation period. The theoretical concept of melody development (MD-Model) contends that melody complexification is an important building block on the path towards language. Recognition of this developmental process will considerably improve not only our understanding of early preparatory processes for language acquisition, but most importantly also allow for the creation of clinically robust risk markers for developmental language disorders.}, language = {en} } @article{YeAmbiOlguinNavaetal.2021, author = {Ye, Liqing and Ambi, Uddhav B. and Olguin-Nava, Marco and Gribling-Burrer, Anne-Sophie and Ahmad, Shazeb and Bohn, Patrick and Weber, Melanie M. and Smyth, Redmond P.}, title = {RNA structures and their role in selective genome packaging}, series = {Viruses}, volume = {13}, journal = {Viruses}, number = {9}, issn = {1999-4915}, doi = {10.3390/v13091788}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246101}, year = {2021}, abstract = {To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.}, language = {en} } @article{HoehneProkopovKuhletal.2021, author = {H{\"o}hne, Christin and Prokopov, Dmitry and Kuhl, Heiner and Du, Kang and Klopp, Christophe and Wuertz, Sven and Trifonov, Vladimir and St{\"o}ck, Matthias}, title = {The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome-scale sturgeon genome}, series = {Reviews in Aquaculture}, volume = {13}, journal = {Reviews in Aquaculture}, number = {3}, doi = {10.1111/raq.12542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239865}, pages = {1709 -- 1729}, year = {2021}, abstract = {Sturgeon immunity is relevant for basic evolutionary and applied research, including caviar- and meat-producing aquaculture, protection of wild sturgeons and their re-introduction through conservation aquaculture. Starting from a comprehensive overview of immune organs, we discuss pathways of innate and adaptive immune systems in a vertebrate phylogenetic and genomic context. The thymus as a key organ of adaptive immunity in sturgeons requires future molecular studies. Likewise, data on immune functions of sturgeon-specific pericardial and meningeal tissues are largely missing. Integrating immunological and endocrine functions, the sturgeon head kidney resembles that of teleosts. Recently identified pattern recognition receptors in sturgeon require research on downstream regulation. We review first acipenseriform data on Toll-like receptors (TLRs), type I transmembrane glycoproteins expressed in membranes and endosomes, initiating inflammation and host defence by molecular pattern-induced activation. Retinoic acid-inducible gene-I-like (RIG-like) receptors of sturgeons present RNA and key sensors of virus infections in most cell types. Sturgeons and teleosts share major components of the adaptive immune system, including B cells, immunoglobulins, major histocompatibility complex and the adaptive cellular response by T cells. The ontogeny of the sturgeon innate and onset of adaptive immune genes in different organs remain understudied. In a genomics perspective, our new data on 100 key immune genes exemplify a multitude of evolutionary trajectories after the sturgeon-specific genome duplication, where some single-copy genes contrast with many duplications, allowing tissue specialization, sub-functionalization or both. Our preliminary conclusion should be tested by future evolutionary bioinformatics, involving all >1000 immunity genes. This knowledge update about the acipenseriform immune system identifies several important research gaps and presents a basis for future applications.}, language = {en} } @article{BorgesLinkEngstleretal.2021, author = {Borges, Alyssa R. and Link, Fabian and Engstler, Markus and Jones, Nicola G.}, title = {The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.720536}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249253}, year = {2021}, abstract = {The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein's attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.}, language = {en} }