@article{ElsnerKunzWagneretal.2023, author = {Elsner, Clara and Kunz, Andreas Steven and Wagner, Nicole and Huflage, Henner and H{\"u}bner, Stefan and Luetkens, Karsten Sebastian and Bley, Thorsten Alexander and Schmitt, Rainer and Erg{\"u}n, S{\"u}leyman and Grunz, Jan-Peter}, title = {MRI-based evaluation of the flexor digitorum superficialis anatomy: investigating the prevalence and morphometry of the "chiasma antebrachii"}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {14}, issn = {2075-4418}, doi = {10.3390/diagnostics13142406}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362631}, year = {2023}, abstract = {Recent dissection studies resulted in the introduction of the term "chiasma antebrachii", which represents an intersection of the flexor digitorum superficialis (FDS) tendons for digits 2 and 3 in the distal third of the forearm. This retrospective investigation aimed to provide an MRI-based morphologic analysis of the chiasma antebrachii. In 89 patients (41 women, 39.3 ± 21.3 years), MRI examinations of the forearm (2010-2021) were reviewed by two radiologists, who evaluated all studies for the presence and length of the chiasma as well as its distance from the distal radioulnar and elbow joint. The chiasma antebrachii was identified in the distal third of the forearm in 88 patients (98.9\%), while one intersection was located more proximally in the middle part. The chiasma had a median length of 28 mm (interquartile range: 24-35 mm). Its distances to the distal radioulnar and elbow joint were 16 mm (8-25 mm) and 215 mm (187-227 mm), respectively. T1-weighted post-contrast sequences were found to be superior to T2- or proton-density-weighted sequences in 71 cases (79.8\%). To conclude, the chiasma antebrachii is part of the standard FDS anatomy. Knowledge of its morphology is important, e.g., in targeted injections of therapeutics or reconstructive surgery.}, language = {en} } @article{LuetkensGrunzKunzetal.2023, author = {Luetkens, Karsten Sebastian and Grunz, Jan-Peter and Kunz, Andreas Steven and Huflage, Henner and Weißenberger, Manuel and Hartung, Viktor and Patzer, Theresa Sophie and Gruschwitz, Philipp and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Feldle, Philipp}, title = {Ultra-high-resolution photon-counting detector CT arthrography of the ankle: a feasibility study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {13}, issn = {2075-4418}, doi = {10.3390/diagnostics13132201}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-362622}, year = {2023}, abstract = {This study was designed to investigate the image quality of ultra-high-resolution ankle arthrography employing a photon-counting detector CT. Bilateral arthrograms were acquired in four cadaveric specimens with full-dose (10 mGy) and low-dose (3 mGy) scan protocols. Three convolution kernels with different spatial frequencies were utilized for image reconstruction (ρ\(_{50}\); Br98: 39.0, Br84: 22.6, Br76: 16.5 lp/cm). Seven radiologists subjectively assessed the image quality regarding the depiction of bone, hyaline cartilage, and ligaments. An additional quantitative assessment comprised the measurement of noise and the computation of contrast-to-noise ratios (CNR). While an optimal depiction of bone tissue was achieved with the ultra-sharp Br98 kernel (S ≤ 0.043), the visualization of cartilage improved with lower modulation transfer functions at each dose level (p ≤ 0.014). The interrater reliability ranged from good to excellent for all assessed tissues (intraclass correlation coefficient ≥ 0.805). The noise levels in subcutaneous fat decreased with reduced spatial frequency (p \< 0.001). Notably, the low-dose Br76 matched the CNR of the full-dose Br84 (p 0.999) and superseded Br98 (p \< 0.001) in all tissues. Based on the reported results, a photon-counting detector CT arthrography of the ankle with an ultra-high-resolution collimation offers stellar image quality and tissue assessability, improving the evaluation of miniscule anatomical structures. While bone depiction was superior in combination with an ultra-sharp convolution kernel, soft tissue evaluation benefited from employing a lower spatial frequency.}, language = {en} } @article{GoetzRueckschlossBalketal.2023, author = {G{\"o}tz, Lisa and Rueckschloss, Uwe and Balk, G{\"o}zde and Pfeiffer, Verena and Erg{\"u}n, S{\"u}leyman and Kleefeldt, Florian}, title = {The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1295232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357250}, year = {2023}, abstract = {The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.}, language = {en} } @article{GruschwitzHartungErguenetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Erg{\"u}n, S{\"u}leyman and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Pannenbecker, Pauline and Augustin, Anne Marie and Kunz, Andreas Steven and Feldle, Philipp and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model}, series = {European Radiology Experimental}, volume = {7}, journal = {European Radiology Experimental}, doi = {10.1186/s41747-023-00398-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357905}, year = {2023}, abstract = {Background With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. Methods After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). Results UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). Conclusions Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. Relevance statement The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. Key points • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Peter, Dominik and Lichthardt, Sven and Huflage, Henner and Grunz, Jan-Peter and Augustin, Anne Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Petritsch, Bernhard}, title = {Continuous extracorporeal femoral perfusion model for intravascular ultrasound, computed tomography and digital subtraction angiography}, series = {PLoS One}, volume = {18}, journal = {PLoS One}, number = {5}, issn = {1932-6203}, doi = {10.1371/journal.pone.0285810}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350136}, year = {2023}, abstract = {Objectives We developed a novel human cadaveric perfusion model with continuous extracorporeal femoral perfusion suitable for performing intra-individual comparison studies, training of interventional procedures and preclinical testing of endovascular devices. Objective of this study was to introduce the techniques and evaluate the feasibility for realistic computed tomography angiography (CTA), digital subtraction angiography (DSA) including vascular interventions, and intravascular ultrasound (IVUS). Methods The establishment of the extracorporeal perfusion was attempted using one formalin-fixed and five fresh-frozen human cadavers. In all specimens, the common femoral and popliteal arteries were prepared, introducer sheaths inserted, and perfusion established by a peristaltic pump. Subsequently, we performed CTA and bilateral DSA in five cadavers and IVUS on both legs of four donors. Examination time without unintentional interruption was measured both with and without non-contrast planning CT. Percutaneous transluminal angioplasty and stenting was performed by two interventional radiologists on nine extremities (five donors) using a broad spectrum of different intravascular devices. Results The perfusion of the upper leg arteries was successfully established in all fresh-frozen but not in the formalin-fixed cadaver. The experimental setup generated a stable circulation in each procedure (ten upper legs) for a period of more than six hours. Images acquired with CT, DSA and IVUS offered a realistic impression and enabled the sufficient visualization of all examined vessel segments. Arterial cannulating, percutaneous transluminal angioplasty as well as stent deployment were feasible in a way that is comparable to a vascular intervention in vivo. The perfusion model allowed for introduction and testing of previously not used devices. Conclusions The continuous femoral perfusion model can be established with moderate effort, works stable, and is utilizable for medical imaging of the peripheral arterial system using CTA, DSA and IVUS. Therefore, it appears suitable for research studies, developing skills in interventional procedures and testing of new or unfamiliar vascular devices.}, language = {en} } @article{MadrahimovMutsenkoNatanovetal.2023, author = {Madrahimov, Nodir and Mutsenko, Vitalii and Natanov, Ruslan and Radaković, Dejan and Klapproth, Andr{\´e} and Hassan, Mohamed and Rosenfeldt, Mathias and Kleefeldt, Florian and Aleksic, Ivan and Erg{\"u}n, S{\"u}leyman and Otto, Christoph and Leyh, Rainer G. and Bening, Constanze}, title = {Multiorgan recovery in a cadaver body using mild hypothermic ECMO treatment in a murine model}, series = {Intensive Care Medicine Experimental}, volume = {11}, journal = {Intensive Care Medicine Experimental}, doi = {10.1186/s40635-023-00534-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357381}, year = {2023}, abstract = {Background Transplant candidates on the waiting list are increasingly challenged by the lack of organs. Most of the organs can only be kept viable within very limited timeframes (e.g., mere 4-6 h for heart and lungs exposed to refrigeration temperatures ex vivo). Donation after circulatory death (DCD) using extracorporeal membrane oxygenation (ECMO) can significantly enlarge the donor pool, organ yield per donor, and shelf life. Nevertheless, clinical attempts to recover organs for transplantation after uncontrolled DCD are extremely complex and hardly reproducible. Therefore, as a preliminary strategy to fulfill this task, experimental protocols using feasible animal models are highly warranted. The primary aim of the study was to develop a model of ECMO-based cadaver organ recovery in mice. Our model mimics uncontrolled organ donation after an "out-of-hospital" sudden unexpected death with subsequent "in-hospital" cadaver management post-mortem. The secondary aim was to assess blood gas parameters, cardiac activity as well as overall organ state. The study protocol included post-mortem heparin-streptokinase administration 10 min after confirmed death induced by cervical dislocation under full anesthesia. After cannulation, veno-arterial ECMO (V-A ECMO) was started 1 h after death and continued for 2 h under mild hypothermic conditions followed by organ harvest. Pressure- and flow-controlled oxygenated blood-based reperfusion of a cadaver body was accompanied by blood gas analysis (BGA), electrocardiography, and histological evaluation of ischemia-reperfusion injury. For the first time, we designed and implemented, a not yet reported, miniaturized murine hemodialysis circuit for the treatment of severe hyperkalemia and metabolic acidosis post-mortem. Results BGA parameters confirmed profound ischemia typical for cadavers and incompatible with normal physiology, including extremely low blood pH, profound negative base excess, and enormously high levels of lactate. Two hours after ECMO implantation, blood pH values of a cadaver body restored from < 6.5 to 7.3 ± 0.05, pCO2 was lowered from > 130 to 41.7 ± 10.5 mmHg, sO2, base excess, and HCO3 were all elevated from below detection thresholds to 99.5 ± 0.6\%, - 4 ± 6.2 and 22.0 ± 6.0 mmol/L, respectively (Student T test, p < 0.05). A substantial decrease in hyperlactatemia (from > 20 to 10.5 ± 1.7 mmol/L) and hyperkalemia (from > 9 to 6.9 ± 1.0 mmol/L) was observed when hemodialysis was implemented. On balance, the first signs of regained heart activity appeared on average 10 min after ECMO initiation without cardioplegia or any inotropic and vasopressor support. This was followed by restoration of myocardial contractility with a heart rate of up to 200 beats per minute (bpm) as detected by an electrocardiogram (ECG). Histological examinations revealed no evidence of heart injury 3 h post-mortem, whereas shock-specific morphological changes relevant to acute death and consequent cardiac/circulatory arrest were observed in the lungs, liver, and kidney of both control and ECMO-treated cadaver mice. Conclusions Thus, our model represents a promising approach to facilitate studying perspectives of cadaveric multiorgan recovery for transplantation. Moreover, it opens new possibilities for cadaver organ treatment to extend and potentiate donation and, hence, contribute to solving the organ shortage dilemma.}, language = {en} } @article{AscheidBaumannFunkeetal.2023, author = {Ascheid, David and Baumann, Magdalena and Funke, Caroline and Volz, Julia and Pinnecker, J{\"u}rgen and Friedrich, Mike and H{\"o}hn, Marie and Nandigama, Rajender and Erg{\"u}n, S{\"u}leyman and Nieswandt, Bernhard and Heinze, Katrin G. and Henke, Erik}, title = {Image-based modeling of vascular organization to evaluate anti-angiogenic therapy}, series = {Biology Direct}, volume = {18}, journal = {Biology Direct}, doi = {10.1186/s13062-023-00365-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357242}, year = {2023}, abstract = {In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy.}, language = {en} } @article{PozziBolzoniBiellaetal.2023, author = {Pozzi, Nicol{\´o} Gabriele and Bolzoni, Francesco and Biella, Gabriele Eliseo Mario and Pezzoli, Gianni and Ip, Chi Wang and Volkmann, Jens and Cavallari, Paolo and Asan, Esther and Isaias, Ioannis Ugo}, title = {Brain noradrenergic innervation supports the development of Parkinson's tremor: a study in a reserpinized rat model}, series = {Cells}, volume = {12}, journal = {Cells}, number = {21}, issn = {2073-4409}, doi = {10.3390/cells12212529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357721}, year = {2023}, abstract = {The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um\(^2\), p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (\% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.}, language = {en} } @article{SchreiberLohrBaltesetal.2023, author = {Schreiber, Laura M. and Lohr, David and Baltes, Steffen and Vogel, Ulrich and Elabyad, Ibrahim A. and Bille, Maya and Reiter, Theresa and Kosmala, Aleksander and Gassenmaier, Tobias and Stefanescu, Maria R. and Kollmann, Alena and Aures, Julia and Schnitter, Florian and Pali, Mihaela and Ueda, Yuichiro and Williams, Tatiana and Christa, Martin and Hofmann, Ulrich and Bauer, Wolfgang and Gerull, Brenda and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Terekhov, Maxim}, title = {Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research}, series = {Frontiers in Cardiovascular Medicine}, volume = {10}, journal = {Frontiers in Cardiovascular Medicine}, issn = {2297-055X}, doi = {10.3389/fcvm.2023.1068390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317398}, year = {2023}, abstract = {A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Erg{\"u}n, S{\"u}leyman and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Kunz, Andreas Steven and Pannenbecker, Pauline and Kuhl, Philipp Josef and Augustin, Anne Marie and Bley, Thorsten Alexander and Petritsch, Bernhard and Grunz, Jan-Peter}, title = {Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-39063-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357912}, year = {2023}, abstract = {This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.}, language = {en} }