@article{SollfrankHartGoodselletal.2015, author = {Sollfrank, Teresa and Hart, Daniel and Goodsell, Rachel and Foster, Jonathan and Tan, Tele}, title = {3D visualization of movements can amplify motor cortex activation during subsequent motor imagery}, series = {Frontiers in Human Neuroscience}, volume = {9}, journal = {Frontiers in Human Neuroscience}, number = {463}, doi = {10.3389/fnhum.2015.00463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126058}, year = {2015}, abstract = {A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.}, language = {en} } @article{HoubenAlimovaSarmaetal.2023, author = {Houben, Roland and Alimova, Pamela and Sarma, Bhavishya and Hesbacher, Sonja and Schulte, Carolin and Sarosi, Eva-Maria and Adam, Christian and Kervarrec, Thibault and Schrama, David}, title = {4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone inhibits MCPyV T antigen expression in Merkel cell carcinoma independent of Aurora kinase A}, series = {Cancers}, volume = {15}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers15092542}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313547}, year = {2023}, abstract = {Merkel cell carcinoma (MCC) is frequently caused by the Merkel cell polyomavirus (MCPyV), and MCPyV-positive tumor cells depend on expression of the virus-encoded T antigens (TA). Here, we identify 4-[(5-methyl-1H-pyrazol-3-yl)amino]-2H-phenyl-1-phthalazinone (PHT) — a reported inhibitor of Aurora kinase A — as a compound inhibiting growth of MCC cells by repressing noncoding control region (NCCR)-controlled TA transcription. Surprisingly, we find that TA repression is not caused by inhibition of Aurora kinase A. However, we demonstrate that β-catenin — a transcription factor repressed by active glycogen synthase kinase 3 (GSK3) — is activated by PHT, suggesting that PHT bears a hitherto unreported inhibitory activity against GSK3, a kinase known to function in promoting TA transcription. Indeed, applying an in vitro kinase assay, we demonstrate that PHT directly targets GSK3. Finally, we demonstrate that PHT exhibits in vivo antitumor activity in an MCC xenograft mouse model, suggesting a potential use in future therapeutic settings for MCC.}, language = {en} } @article{ChristlNusserHerzog1988, author = {Christl, Manfred and Nusser, R. and Herzog, C.}, title = {4-Bromoctavalen und zwei (Brommethylen)homobenzvalene anstelle eines erwarteten Bromoctabisvalens}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-58409}, year = {1988}, abstract = {No abstract available.}, subject = {Organische Chemie}, language = {de} } @article{WiedenmannBocquillonDeaconetal.2016, author = {Wiedenmann, J. and Bocquillon, E. and Deacon, R.S. and Hartinger, S. and Herrmann, O. and Klapwijk, T.M. and Maier, L. and Ames, C. and Br{\"u}ne, C. and Gould, C. and Oiwa, A. and Ishibashi, K. and Tarucha, S. and Buhmann, H. and Molenkamp, L.W.}, title = {4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms10303}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175353}, year = {2016}, abstract = {The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.}, language = {en} } @article{StopperPechanSchiffmann1992, author = {Stopper, Helga and Pechan, R. and Schiffmann, D.}, title = {5-azacytidine induces micronuclei in and morphological transformation of Syrian hamster embryo fibroblasts in the absence of unscheduled DNA synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63443}, year = {1992}, abstract = {lt is known that 5-azacytidine (5-AC) induces tumors in several organs of rats and mice. The mechanisms of these effects are still poorly understood although it is known that 5-AC can be incorporated into DNA. Furthermore, it can inhibit DNA methylation. The known data on its clastogenic andjor gene mutation-inducing potential are still controversial. Therefore, we have investigated the kinds of genotoxic effects caused by 5-AC in Syrian hamster embryo (SHE) fibroblasts. Three different endp6ints (micronucleus formation, unscheduled DNA synthesis (UDS) and cell transforrnation) were assayed under similar conditions of metabolism and dose at target in this cell system. 5-AC induces morphological transformation of SHE cells, but not UDS. Therefore, 5-AC does not seem to cause repairable DNA lesions. Furthermore, our studies revealed that 5-AC is a potent inducer of mkronuclei in the SHE system. Immunocytochemical analysis revealed that a certain percentage of these contain kinetochores indicating that 5-AC may induce both clastogenic events and numerical chromosome changes.}, subject = {Toxikologie}, language = {en} } @article{KarabegGrauthoffKollertetal.2013, author = {Karabeg, Margherita M. and Grauthoff, Sandra and Kollert, Sina Y. and Weidner, Magdalena and Heiming, Rebecca S. and Jansen, Friederike and Popp, Sandy and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert and Schmitt, Angelika G. and Lewejohann, Lars}, title = {5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0078238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129978}, pages = {e78238}, year = {2013}, abstract = {The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in na{\"i}ve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.}, language = {en} } @article{PoppSchmittBoehrerLangeretal.2021, author = {Popp, Sandy and Schmitt-B{\"o}hrer, Angelika and Langer, Simon and Hofmann, Ulrich and Hommers, Leif and Schuh, Kai and Frantz, Stefan and Lesch, Klaus-Peter and Frey, Anna}, title = {5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {14}, issn = {2077-0383}, doi = {10.3390/jcm10143104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242739}, year = {2021}, abstract = {Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally na{\"i}ve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (-/-) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT-/- mice with infarct sizes >30\% experienced 100\% mortality, while 50\% of 5-HTT+/- and 37\% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30\%) 5-HTT-/- mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT-/- mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.}, language = {en} } @article{LevyBoulleEmeritetal.2019, author = {Levy, Marion J. F. and Boulle, Fabien and Emerit, Michel Boris and Poilbout, Corinne and Steinbusch, Harry W. M. and Van den Hove, Daniel L. A. and Kenis, Gunter and Lanfumey, Laurence}, title = {5-HTT independent effects of fluoxetine on neuroplasticity}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, doi = {10.1038/s41598-019-42775-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236759}, year = {2019}, abstract = {Selective serotonin reuptake inhibitors are among the most prescribed antidepressants. Fluoxetine is the lead molecule which exerts its therapeutic effects, at least in part, by promoting neuroplasticity through increased brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) signalling. It is unclear however, to which extent the neuroplastic effects of fluoxetine are solely mediated by the inhibition of the serotonin transporter (5-HTT). To answer this question, the effects of fluoxetine on neuroplasticity were analysed in both wild type (WT) and 5-Htt knock-out (KO) mice. Using Western blotting and RT-qPCR approaches, we showed that fluoxetine 10 µM activated BDNF/TrkB signalling pathways in both CD1 and C57BL/6J mouse primary cortical neurons. Interestingly, effects on BDNF signalling were observed in primary cortical neurons from both 5-Htt WT and KO mice. In addition, a 3-week in vivo fluoxetine treatment (15 mg/kg/d; i.p.) increased the expression of plasticity genes in brains of both 5-Htt WT and KO mice, and tended to equally enhance hippocampal cell proliferation in both genotypes, without reaching significance. Our results further suggest that fluoxetine-induced neuroplasticity does not solely depend on 5-HTT blockade, but might rely, at least in part, on 5-HTT-independent direct activation of TrkB.}, language = {en} } @article{ChenPalmLeschetal.2011, author = {Chen, Y. and Palm, F. and Lesch, K. P. and Gerlach, M. and Moessner, R. and Sommer, C.}, title = {5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund's adjuvant-induced thermal hyperalgesia in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68858}, year = {2011}, abstract = {Background: The role of serotonin (5-hydroxytrptamine, 5-HT) in the modulation of pain has been widely studied. Previous work led to the hypothesis that 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, might by itself influence pain thresholds. Results: In the present study, we investigated the role of 5-HIAA in inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) into the hind paw of mice. Wild-type mice were compared to mice deficient of the 5-HT transporter (5-HTT-/- mice) using behavioral tests for hyperalgesia and high-performance liquid chromatography (HPLC) to determine tissue levels of 5-HIAA. Wild-type mice reproducibly developed thermal hyperalgesia and paw edema for 5 days after CFA injection. 5-HTT-/- mice treated with CFA had reduced thermal hyperalgesia on day 1 after CFA injection and normal responses to heat hereafter. The 5-HIAA levels in spinal cord and sciatic nerve as measured with HPLC were lower in 5-HTT-/- mice than in wild-type mice after CFA injection. Pretreatment of wild-type mice with intraperitoneal injection of para-chlorophenylalanine (p-CPA), a serotonin synthesis inhibitor, resulted in depletion of the 5-HIAA content in spinal cord and sciatic nerve and decrease in thermal hyperalgesia in CFA injected mice. The application of exogenous 5-HIAA resulted in potentiation of thermal hyperalgesia induced by CFA in 5-HTT-/- mice and in wild-type mice pretreated with p- CPA, but not in wild-type mice without p-CPA pretreatment. Further, methysergide, a broad-spectrum serotonin receptor antagonist, had no effect on 5-HIAA-induced potentiation of thermal hyperalgesia in CFA-treated wildtype mice. Conclusion: Taken together, the present results suggest that 5-HIAA plays an important role in modulating peripheral thermal hyperalgesia in CFA induced inflammation, probably via a non-serotonin receptor mechanism.}, subject = {Medizin}, language = {en} } @article{BloemerPachelHofmannetal.2013, author = {Bl{\"o}mer, Nadja and Pachel, Christina and Hofmann, Urlich and Nordbeck, Peter and Bauer, Wolfgang and Mathes, Denise and Frey, Anna and Bayer, Barbara and Vogel, Benjamin and Ertl, Georg}, title = {5-Lipoxygenase facilitates healing after myocardial infarction}, series = {Basic Research in Cardiology}, volume = {108}, journal = {Basic Research in Cardiology}, number = {4}, doi = {10.1007/s00395-013-0367-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132602}, year = {2013}, abstract = {Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{-/-}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{-/-}\) bone marrow in 5-LOX\(^{-/-}\) animals), indicating that an altered function of 5-LOX\(^{-/-}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{-/-}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{-/-}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.}, language = {en} }