@article{PotreckMutkeWeylandetal.2021, author = {Potreck, Arne and Mutke, Matthias A. and Weyland, Charlotte S. and Pfaff, Johannes A. R. and Ringleb, Peter A. and Mundiyanapurath, Sibu and M{\"o}hlenbruch, Markus A. and Heiland, Sabine and Pham, Mirko and Bendszus, Martin and Hoffmann, Angelika}, title = {Combined Perfusion and Permeability Imaging Reveals Different Pathophysiologic Tissue Responses After Successful Thrombectomy}, series = {Translational Stroke Research}, volume = {12}, journal = {Translational Stroke Research}, number = {5}, issn = {1868-4483}, doi = {10.1007/s12975-020-00885-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-308946}, pages = {799-807}, year = {2021}, abstract = {Despite successful recanalization of large-vessel occlusions in acute ischemic stroke, individual patients profit to a varying degree. Dynamic susceptibility-weighted perfusion and dynamic T1-weighted contrast-enhanced blood-brain barrier permeability imaging may help to determine secondary stroke injury and predict clinical outcome. We prospectively performed perfusion and permeability imaging in 38 patients within 24 h after successful mechanical thrombectomy of an occlusion of the middle cerebral artery M1 segment. Perfusion alterations were evaluated on cerebral blood flow maps, blood-brain barrier disruption (BBBD) visually and quantitatively on ktrans maps and hemorrhagic transformation on susceptibility-weighted images. Visual BBBD within the DWI lesion corresponded to a median ktrans elevation (IQR) of 0.77 (0.41-1.4) min-1 and was found in all 7 cases of hypoperfusion (100\%), in 10 of 16 cases of hyperperfusion (63\%), and in only three of 13 cases with unaffected perfusion (23\%). BBBD was significantly associated with hemorrhagic transformation (p < 0.001). While BBBD alone was not a predictor of clinical outcome at 3 months (positive predictive value (PPV) = 0.8 [0.56-0.94]), hypoperfusion occurred more often in patients with unfavorable clinical outcome (PPV = 0.43 [0.10-0.82]) compared to hyperperfusion (PPV = 0.93 [0.68-1.0]) or unaffected perfusion (PPV = 1.0 [0.75-1.0]). We show that combined perfusion and permeability imaging reveals distinct infarct signatures after recanalization, indicating the severity of prior ischemic damage. It assists in predicting clinical outcome and may identify patients at risk of stroke progression.}, language = {en} } @article{JendeKenderRotheretal.2020, author = {Jende, Johann M. E. and Kender, Zoltan and Rother, Christian and Alvarez-Ramos, Lucia and Groener, Jan B. and Pham, Mirko and Morgenstern, Jakob and Oikonomou, Dimitrios and Hahn, Artur and Juerchott, Alexander and Kollmer, Jennifer and Heiland, Sabine and Kopf, Stefan and Nawroth, Peter P. and Bendszus, Martin and Kurz, Felix T.}, title = {Diabetic Polyneuropathy Is Associated With Pathomorphological Changes in Human Dorsal Root Ganglia: A Study Using 3T MR Neurography}, series = {Frontiers in Neuroscience}, volume = {14}, journal = {Frontiers in Neuroscience}, doi = {10.3389/fnins.2020.570744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212459}, year = {2020}, abstract = {Diabetic neuropathy (DPN) is one of the most severe and yet most poorly understood complications of diabetes mellitus. In vivo imaging of dorsal root ganglia (DRG), a key structure for the understanding of DPN, has been restricted to animal studies. These have shown a correlation of decreased DRG volume with neuropathic symptom severity. Our objective was to investigate correlations of DRG morphology and signal characteristics at 3 Tesla (3T) magnetic resonance neurography (MRN) with clinical and serological data in diabetic patients with and without DPN. In this cross-sectional study, participants underwent 3T MRN of both L5 DRG using an isotropic 3D T2-weighted, fat-suppressed sequence with subsequent segmentation of DRG volume and analysis of normalized signal properties. Overall, 55 diabetes patients (66 ± 9 years; 32 men; 30 with DPN) took part in this study. DRG volume was smaller in patients with severe DPN when compared to patients with mild or moderate DPN (134.7 ± 21.86 vs 170.1 ± 49.22; p = 0.040). In DPN patients, DRG volume was negatively correlated with the neuropathy disability score (r = -0.43; 95\%CI = -0.66 to -0.14; p = 0.02), a measure of neuropathy severity. DRG volume showed negative correlations with triglycerides (r = -0.40; 95\%CI = -0.57 to -0.19; p = 0.006), and LDL cholesterol (r = -0.33; 95\%CI = -0.51 to -0.11; p = 0.04). There was a strong positive correlation of normalized MR signal intensity (SI) with the neuropathy symptom score in the subgroup of patients with painful DPN (r = 0.80; 95\%CI = 0.46 to 0.93; p = 0.005). DRG SI was positively correlated with HbA1c levels (r = 0.30; 95\%CI = 0.09 to 0.50; p = 0.03) and the triglyceride/HDL ratio (r = 0.40; 95\%CI = 0.19 to 0.57; p = 0.007). In this first in vivo study, we found DRG morphological degeneration and signal increase in correlation with neuropathy severity. This elucidates the potential importance of MR-based DRG assessments in studying structural and functional changes in DPN.}, language = {en} }