@article{SchartlShenMaurusetal.2015, author = {Schartl, Manfred and Shen, Yingjia and Maurus, Katja and Walter, Ron and Tomlinson, Chad and Wilson, Richard K. and Postlethwait, John and Warren, Wesley C.}, title = {Whole body melanoma transcriptome response in medaka}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0143057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144714}, pages = {e0143057}, year = {2015}, abstract = {The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.}, language = {en} } @article{SchartlSchroeder1987, author = {Schartl, Manfred and Schr{\"o}der, Johannes Horst}, title = {A new species of the genus Xiphophorus Heckel 1848, endemic to northern Coahuila, Mexico (Pisces: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87117}, year = {1987}, abstract = {Xiphophorus meyeri n. sp. is described as an endemic to Muzquiz, Coahuila, Mexico. It appears to be the northernmost species of the genus. The new species is related to X. couchianus and X. gordoni, but differs morphologically from those by dorsal fin ray number, by the expression of some gonopodial features and most markedly by the appearance of macromelanophores or tr-melanophores.}, subject = {Schwertkr{\"a}pfling}, language = {en} } @article{SchartlSchoriesWatamatsuetal.2018, author = {Schartl, Manfred and Schories, Susanne and Watamatsu, Yuko and Nagao, Yusuke and Hashimoto, Hisashi and Bertin, Chlo{\´e} and Mourot, Brigitte and Schmidt, Cornelia and Wilhelm, Dagmar and Centanin, Lazaro and Guiguen, Yann and Herpin, Amaury}, title = {Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements}, series = {BMC Biology}, volume = {16}, journal = {BMC Biology}, number = {16}, doi = {10.1186/s12915-018-0485-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175827}, year = {2018}, abstract = {Background: Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results: We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions: Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element.}, language = {en} } @article{SchartlSchmidtAndersetal.1985, author = {Schartl, Manfred and Schmidt, C. R. and Anders, A. and Barnekow, A.}, title = {Elevated expression of the cellular src gene in tumors of differing etiologies in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61889}, year = {1985}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{SchartlSchluppSchartletal.1991, author = {Schartl, Manfred and Schlupp, Ingo and Schartl, Angelika and Meyer, Manfred K. and Nanda, Indrajit and Schmid, Michael and Epplen, J{\"o}rg T. and Parzefall, Jakob}, title = {On the stability of dispensable constituents of the eukaryotic genome: Stability of coding sequences versus truly hypervariable sequences in a clonal vertebrate, the amazon molly, Poecilia formosa}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61731}, year = {1991}, abstract = {In dooal unisexual vertebrales, the genes specifying the males become dispensable. To study tbe rate of such geoes the gynogeoetic all-female fisb Poecilillfonnolll was treated with androgens. Phenotypic males were obtained that exbibited the complete set of male cbaracteristics of dosely related gooocboristic species, induding body proportions, pigmentation, the extremely complex insemination apparatus of poecil{\"u}d fish, sexual bebavior, and spermatogeoesls. Tbe apparent stabllity of such genic structures, induding those involved in androgen regulation, is contrasted by high instability of noncoding sequeaces. Frequent mutations, thelr donal transmission, and at least two truly hypervariable Iod leading to individual difl'ereaces between these othenrise donal organisms were detected by DNA fingerprinting. These observations substantiate the concept that also in "ameiotic" vertebrates certain compartments of the genome are more prooe to mutatiooal alterations than others.}, subject = {Physiologische Chemie}, language = {en} } @article{SchartlPeter1988, author = {Schartl, Manfred and Peter, R. U.}, title = {Progressive growth of fish tumors after transplantation into thymus-aplastic (nu/nu) mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61833}, year = {1988}, abstract = {No abstract available}, subject = {Physiologische Chemie}, language = {en} } @article{SchartlNandaSchluppetal.1990, author = {Schartl, Manfred and Nanda, Indrajit and Schlupp, Ingo and Parzefall, Jakob and Schmid, Michael and Epplen, J{\"o}rg T.}, title = {Genetic variation in the clonal vertebrate Poecilia formosa is limited to few truly hypervariable loci}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86359}, year = {1990}, abstract = {No abstract available.}, subject = {Amazon Molly}, language = {en} } @inproceedings{SchartlMaeuelerRaulfetal.1988, author = {Schartl, Manfred and M{\"a}ueler, Winfried and Raulf, Friedrich and Robertson, Scott M.}, title = {Molecular aspects of melanoma formation in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72689}, year = {1988}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @article{SchartlKneitzWildeetal.2012, author = {Schartl, Manfred and Kneitz, Susanne and Wilde, Brigitta and Wagner, Toni and Henkel, Christiaan V. and Spaink, Hermann P. and Meierjohann, Svenja}, title = {Conserved expression signatures between medaka and human pigment cell tumors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75848}, year = {2012}, abstract = {Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules.}, subject = {Biologie}, language = {en} } @article{SchartlKneitzVolkoffetal.2019, author = {Schartl, Manfred and Kneitz, Susanne and Volkoff, Helene and Adolfi, Mateus and Schmidt, Cornelia and Fischer, Petra and Minx, Patrick and Tomlinson, Chad and Meyer, Axel and Warren, Wesley C.}, title = {The piranha genome provides molecular insight associated to its unique feeding behavior}, series = {Genome Biology and Evolution}, volume = {11}, journal = {Genome Biology and Evolution}, number = {8}, doi = {10.1093/gbe/evz139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202218}, pages = {2099-2106}, year = {2019}, abstract = {The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas' feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.}, language = {en} }