@article{ErbeldingDenkSchroderSchartletal.1994, author = {Erbelding-Denk, Claudia and Schroder, Johannes H. and Schartl, Manfred and Nanda, Indrajit and Schmid, Michael and Epplen, J{\"o}rg T.}, title = {Male polymorphism in Limia perugiae (Pisces: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61573}, year = {1994}, abstract = {The male-polymorphic poeciliid fish, Limia perugiae, a small teleostean endemic to the southeast of the Caribbean island Hispafiola, consists of three male size morphs with uniform females. Large males differentiate at a size va:rying between 25 and 38 mm; intermediate males, between 21 and 25 mm. Under competition, !arge males exhibit an elaborate courtship display, whereas small males show only a sneak-chase behavior. Intermediate males adapt their tactics to the respective competitors. However, all malemorphs can switch from courtship display to sneak-chase behavior. In large mating groups with four males of different size and five or six virgin females, large dominant a-males as weil as small subordinate \(\delta\)-males did not produce any offspring. Unexpectedly, all progeny were sired exclusively by the intemediate subordinate ß- and \(\gamma\)-males. Breeding experiments with the three male morphs can best be explained by a model of Y -linked genes for small and !arge size which are both suspended by the activity of an autosomal recessive repressor responsible for the development of intermediate males. The dominant allele of the recessive repressor, in either its homoorits heterozygous state, activates the Y-chromosomal genes for !arge or small size, respectively. Accordingly, intermediate males may produce male offspring of all size classes, depending on the presence of either the Y-linked gene or the autosomal repressor.}, subject = {Physiologische Chemie}, language = {en} } @article{MeyerMorrisseySchartl1994, author = {Meyer, Axel and Morrissey, Jean M. and Schartl, Manfred}, title = {Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61569}, year = {1994}, abstract = {DARWIN\(^1\) believed that sexual selection accounts for the evolution of exaggerated male ornaments, such as the sword-like caudal fin extensions of male fishes of the genus Xiphophorus, that appear detrimental to survival. Swordtails continue to feature prominently in empirical work and theories of sexual selection; the pre-existing bias hypothesis has been offered as an explanation for the evolution of swords in these fishes\(^{2,3}\). Based upon a largely morphological phylogeny, this hypothesis suggests that female preference to mate with sworded males arose in ancestrally swordless species, thus pre-dating the origin of the sword itself and directly driving its evolution. Here we present a molecular phylogeny (based on mitochondrial and nuclear DNA sequences) of Xiphophorus which differs from the traditional one: it indicates that the sword originated and was lost repeatedly. Our phylogeny suggests that the ancestor of the genus is more likely to have possessed a sword than not, thus questioning the applicability of the pre-existing bias hypothesis as an explanation for the cvolution of this sexually selected trait.}, subject = {Physiologische Chemie}, language = {en} } @article{MalitschekWittbrodtFischeretal.1994, author = {Malitschek, Barbara and Wittbrodt, Joachim and Fischer, Petra and Lammers, Reiner and Ullrich, Axel and Schartl, Manfred}, title = {Autocrine stimulation of the Xmrk receptor tyrosine kinase in Xiphophorus melanoma cells and identification of a source for the physiological ligand}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61551}, year = {1994}, abstract = {The melanoma·inducing gene of Xiphophorus fish encodes the Xmrk receptor tyrosine kinase. U sing a highly specific antiserum p~oduced against the recombinant receptor expressed with a baculovirus, it is shown that Xmrk is the most abundant phosphotyrosine protein in fish melanoma and thus highly activated in the tumors. Studies on a melanoma cellline revealed that these cells produce an activity that considerably stimulates receptor autophosphorylation. The stimulating activity induces receptor down-regulation and can be depleted from the melanoma cellsupernatant by the immobilized recombinant receptor protein. The fish melanoma cells can thus be considered autocrine tumor cells providing a source for future purification and characterization of the Xmrk ligand.}, subject = {Physiologische Chemie}, language = {en} } @article{GoetzKoesterWinkleretal.1994, author = {G{\"o}tz, Rudolf and K{\"o}ster, Reinhard and Winkler, Christoph and Raulf, Friedrich and Lottspeich, Friedrich and Schartl, Manfred and Thoenen, Hans}, title = {Neurotrophin-6 is a new member of the nerve growth factor family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-61544}, year = {1994}, abstract = {DURING vertebrale development, many neurons depend for survival and differentiation on their target cells\(^{1-3}\). The best documented mediator of such a retrograde trophic action is the neurotrophin nerve growth factor (NGF)\(^1\). NGF and the other known members of tbe neurotrophin family, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT -3) and neurotrophin-4/5 (NT -4/5) are conserved as distinct genes over large evolutionary distances\(^{4 -6}\). Here we report the cloning of neurotrophin-6 (NT -6), a new member of this family from the teleost fish Xiphophorus. NT -6 distinguishes itself from the other known neurotrophins in that it is not found as a soluble protein in the medium of producing cells. The addition of heparin (but not chondroitin) effects the release of NT -6 from cell surface and extracellular matrix molecules. Recombinant purified NT -6 has a spectrum of actions similar to NGF on chick sympathetic and sensory neurons, albeit with a lower potency. NT -6 is expressed in tbe embryonie valvulla cerebelli; expression persists in some adult tissues. The interaction of NT-6 with heparin-binding molecuJes may modulate its action in the nervous system .}, subject = {Physiologische Chemie}, language = {en} }