@phdthesis{Slobodskyy2006, author = {Slobodskyy, Taras}, title = {Semimagnetic heterostructures for spintronics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21011}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {F{\"u}r zuk{\"u}nftige Technologien ist die Erforschung von der verwendeten Teilchen n{\"o}tig. Spintronik ist ein modernes Gebiet der Physik, welches neben der Ladung auch die Spineigenschaften als zus¨atzlichen Freiheitsgrad nutzbar macht. Der "conductivity mismatch" stellt ein fundamentales Problem f{\"u}r elektrische Spininjektion aus einem ferromagnetischem Metal in einen diffusiven Halbleiter dar. Daher m{\"u}ssen andere Methoden f{\"u}r die Injektion spin-polarisierter Ladungstr{\"a}ger benutzt werden. Mit einem Tunnelkontakt ist es m{\"o}glich, eine hoch spin-polarisierte, Raumtemperatur Tunnel-Injektion zu erzielen. Wir benutzten einen neuen Ansatz und verwendeten magnetische RTDs zur Spinmanipulation. In dieser Arbeit wurden die Eigenschaften von magnetischen, resonanten Tunneldioden (RTDs) aus rheinen II-VI-Halbleitern in ihrer Verwendung f{\"u}r die Spintronik beschrieben. Wachstumsbedingungen wurden optimiert, um das Peak-to-Valley-Verh{\"a}ltnis zu vergr{\"o}ßern. Das Design der RTDs wurde optimiert, um spinbezogene Transporteffekte beobachten zu k{\"o}nen. Mit einem externen Magnetfeld war Spinmanipulation m{\"o}glich. Selbstorganisierte CdSe Quanten-Strukturen wurden hergestelt und mit optischen Techniken untersucht. Sie w{\"u}rden in (Zn,Be)Se Tunnelbarrieren eingebettet, so dass ihre Eigenschaften durch resonantes Tunneln zug{\"a}nglich wurden.}, subject = {Heterostruktur-Bauelement}, language = {en} } @phdthesis{Volkenstein2004, author = {Volkenstein, Stefan}, title = {Das Wachstumsverhalten von Nucleus cochlearis-Zellen auf verschiedenen Halbleitermaterialien}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-13425}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Patienten mit einer fortgeschrittenen sensorineuralen Schwerh{\"o}rigkeit oder Taubheit k{\"o}nnen von der Versorgung mit implantierbaren H{\"o}rsystemen, wie dem Cochlea-Implantat (CI) oder dem Hirnstammimplantat (ABI=auditory brainstem implant), profitieren. Hierbei werden H{\"o}reindr{\"u}cke unter Umgehung der Cochlea durch direkte elektrische Stimulation auditorischer Neurone erzeugt. Eine g{\"u}nstigere „bioelektronische" Ankopplung solcher Systeme k{\"o}nnte zuk{\"u}nftig zu einer weiteren Verbesserung der H{\"o}rqualit{\"a}t f{\"u}hren. Zielsetzung dieser Arbeit war es, Erkenntnisse {\"u}ber das Wachstumsverhalten und die Beeinflussbarkeit von Nucleus cochlearis(NC)-Explantaten auf verschiedenen Halbleitermaterialien zu gewinnen. Zur Beantwortung dieser Fragestellung wurden NC-Explantate von 10 Tage alten Raten f{\"u}r 96 Stunden in Neurobasalmedium auf den beiden Halbleitermaterialien Silizium (Si) und Siliziumnitrid (Si3N4), jeweils mit verschiedenen Oberfl{\"a}chenbehandlungen und der Beschichtung mit Extrazellul{\"a}rmatrixproteinen durchgef{\"u}hrt. Dabei wurde nach immunhistochemischer F{\"a}rbung der Neuriten die {\"U}berlebensrate der NC-Explantate, die Neuritenanzahl pro Explantat und die Neuritenl{\"a}nge in den unterschiedlichen Gruppen bestimmt. Des Weiteren sollten durch elektronenmikroskopische Betrachtung n{\"a}here Details {\"u}ber die Wechselwirkung der Neuriten mit ihrer biologischen und alloplastischen Umgebung beobachtet werden. Auf unpolierten Halbleitermaterialien konnte zwar eine gutes Anwachsen, aber keine Neuritenelongation beobachtet werden, weder auf Si noch auf Si3N4. Von den untersuchten Gruppen zeigte poliertes und mit Laminin beschichtetes Si3N4 bez{\"u}glich Neuritenl{\"a}nge und -anzahl im Vergleich zur Kontrollgruppe die beste Biokompatibilit{\"a}t. Unter diesen Bedingungen erreichten die Neuriten eine durchschnittliche L{\"a}nge von 236µm und waren damit signifikant l{\"a}nger als in allen Vergleichsgruppen. Die hier durchgef{\"u}hrten Untersuchungen zeigten, dass die Zellkultur von NC-Explantaten auf Halbleitermaterialien prinzipiell m{\"o}glich ist. Die Unterschiede zwischen den einzelnen Gruppen, die Neuritenl{\"a}nge und -anzahl betreffend, deuten auf eine Beeinflussung des Wachstums von NC-Explantaten durch das verwendete Material, die Oberfl{\"a}chenbeschaffenheit und -beschichtung mit Extrazellul{\"a}rmatrixproteinen hin. F{\"u}r weiterf{\"u}hrende Untersuchungen auf diesem Gebiet mit dem Ziel der engen Adaptation von auditorischen Neuronen und Mikrochipsystemen bietet sich somit poliertes und mit Laminin beschichtetes Si3N4 an. Durch implantierbare Mikrochiptechnologie und deren Einbindung in neuronale Netzwerke, beispielsweise im Hirnstamm, k{\"o}nnte eine Verbesserung der H{\"o}rrehabilitation bei ertaubten Patienten erwartet werden.}, language = {de} } @phdthesis{Fiederling2004, author = {Fiederling, Roland}, title = {Elektrische Spininjektion in GaAs LEDs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11338}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die Zielsetzung dieser Arbeit war die elektrische Spininjektion in Halbleiter zu erforschen und Methoden zu deren Realisation zu entwickeln. Hierzu wurden in dieser Arbeit III-V und II-VI Halbleiterheterostrukturen mit Hilfe von Photolumineszenz-, Elektrolumineszenz- und Anregungsspektroskopie untersucht. Die Messungen wurden bei Temperaturen im Bereich von 1.6 K bis 50 K durchgef{\"u}hrt und es wurden Magnetfelder bis zu 9 T verwendet. Die elektrische Spininjektion in einen nicht magnetischen Halbleiter wurde zum ersten mal in dieser Arbeit nachgewiesen. Hierzu wurden zwei neuartige Konzepte verwendet und miteinander verbunden. Zum einen wurde die Detektion von spinpolarisierten Str{\"o}men mit Hilfe von optischen {\"U}berg{\"a}ngen durchgef{\"u}hrt. Zum anderen wurde in dieser Arbeit erstmals ein semimagnetischer II-VI Halbleiter als spinpolarisierender Kontakt verwendet. Durch die optische Detektion wurden die bisherigen Magnetowiderstandsmessungen zur Bestimmung der Spininjektion abgel{\"o}st und durch die Verwendung von semimagnetischen Halbleitern wurde eine neue Klasse von Materialien f{\"u}r die Anwendung in spinselektiven Halbleiterheterostrukturen gefunden. F{\"u}r den optischen Detektor der Elektronenpolarisation wurde eine GaAs/(Al, Ga)As Leuchtdiode (Spin-LED) verwendet, in die {\"u}ber das p-dotierte Substrat unpolarisierte L{\"o}cher und {\"u}ber den n-dotierten semimagnetischen Halbleiter spinpolarisierte Elektronen injiziert wurden. Das durch die Rekombination der Ladungstr{\"a}ger aus der LED emittierte Licht wurde in Oberfl{\"a}chenemission detektiert. Aufgrund der Auswahlregeln f{\"u}r optische {\"U}berg{\"a}nge in Halbleitern mit Zinkblendestruktur ist es m{\"o}glich, anhand der zirkularen Polarisation der Elektrolumineszenz, die Polarisation der injizierten Elektronen anzugeben. Abh{\"a}ngig vom externen Magnetfeld wurde die zirkulare Polarisation der Lichtemission von Spin-LEDs analysiert. Diese Polarisation erreichte schon bei geringen externen Magnetfeldern von z.B. 0.5 T sehr hohe Werte von bis zu 50 \%. Im Vergleich dazu ist die intrinsische Polarisation von GaAs/(Al, Ga)As Heterostrukturen mit bis zu 5 \% sehr gering. An den Spin-LEDs wurden Photolumineszenzmessungen zu der Bestimmung der intrinsischen Polarisation durchgef{\"u}hrt und zus{\"a}tzlich wurde die Elektrolumineszenz von GaAs LEDs ohne manganhaltigen Kontakt analysiert. Mit Hilfe dieser Referenzmessungen konnten Seiteneffekte, die z.B. durch die magneto-optisch aktive manganhaltige Schicht in den Spin-LEDs verursacht werden k{\"o}nnen, ausgeschlossen werden. Insgesamt war es m{\"o}glich die elektrische Spininjektion in Halbleiter eindeutig nachzuweisen.}, subject = {Zwei-Sechs-Halbleiter}, language = {de} }