@phdthesis{Kess2016, author = {Keß, Martin}, title = {Wellenfunktionsbasierte Beschreibung der zweidimensionalen vibronischen Spektroskopie von molekularen Aggregaten und Ladungstransfersystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136458}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Diese Arbeit befasst sich mit zeitaufgel{\"o}sten Prozessen in molekularen Systemen. Dabei wurde sowohl die Wellenpaketdynamik nach Photoanregung betrachtet als auch spektrale Eigenschaften mittels Absorptions- und zweidimensionaler Spektroskopie untersucht. Zun{\"a}chst widmet sich die Arbeit der Wellenpaket- und Populationsdynamik in zwei diabatischen, gekoppelten Zust{\"a}nden. Nach impulsiver Anregung aus dem zu Beginn besetzten Zustand treten in der Populationsdynamik zwei deutlich verschiedene Oszillationen auf. Der langsamer variierende Populationstransfer besitzt die Periodendauer der Vibrationsbewegung und ist auf einen Wechsel der Zust{\"a}nde beim Durchlaufen des Wellenpakets durch die Kreuzungsregion der diabatischen Potentiale zur{\"u}ckzuf{\"u}hren. Die ultraschnelle Komponente mit einer Periodendauer von etwa 4 fs l{\"a}sst sich als eine Art Rabi-Oszillation beschreiben, die durch die (zeitunabh{\"a}ngige) Kopplung hervorgerufen wird. Sie wurde mit Hilfe von analytischen Berechnungen ausf{\"u}hrlich charakterisiert. Damit dieser Prozess auftreten kann m{\"u}ssen mehrere Bedingungen erf{\"u}llt werden: Das Wellenpaket muss {\"u}ber die Dauer der Oszillationen ann{\"a}hernd {\"o}rtlich lokalisiert bleiben; dies ist an den Umkehrpunkten der Wellenpaketsbewegung der Fall. Die Amplitude der Oszillationen in den Populationen ist proportional zum Verh{\"a}ltnis der Kopplung zum Energieabstand der Zust{\"a}nde. Deshalb muss an den station{\"a}ren Stellen die Kopplung groß im Vergleich zum Energieabstand sein. Die Amplitude der Oszillationen h{\"a}ngt außerdem von dem Populationsverh{\"a}ltnis und den Phasen der Komponenten des Wellenpakets in den beiden Zust{\"a}nden ab. Die ultraschnellen Oszillationen bleiben auch in mehrdimensionalen Systemen mit unterschiedlichen Vibrationsfrequenzen je Freiheitsgrad erhalten. Das gleiche Modell wurde benutzt, um Ladungstransferprozesse mittels linearer und 2D-Spektroskopie zu untersuchen. Eine Kopplung an die Umgebung wurde, aufbauend auf einer Quanten-Master-Gleichung in Markov-N{\"a}herung, wellenfunktionsbasiert mittels eines Quantum-Jump-Algorithmus mit expliziter Dephasierung beschrieben. Dabei findet mit vorher definierten Wahrscheinlichkeiten zu jedem Zeitschritt einer von drei stochastischen Prozessen statt. Neben koh{\"a}renter Propagation k{\"o}nnen Spr{\"u}nge in einen anderen Eigenzustand des Systems und Dephasierungen auftreten. Zwei Dissipationsparameter spielen dabei eine Rolle. Dies ist zum einen die St{\"a}rke der System-Bad-Kopplung, welche die Gesamtrate der Energierelaxation beschreibt. Weiterhin beeinflusst die Dephasierungskonstante den Verlust koh{\"a}renter Phasen ohne Energie{\"a}nderung. Fallenzust{\"a}nde wurden identifiziert, die durch sehr geringe Sprungraten in niedrigere Zust{\"a}nde charakterisiert sind. Die Langlebigkeit kann durch die Form der Eigenfunktionen erkl{\"a}rt werden, die eine deutlich andere Wahrscheinlichkeitsverteilung als die der Nicht-Fallenzust{\"a}nde besitzen. Dadurch werden die in die Sprungraten eingehenden Matrixelemente klein. Das Absorptionsspektrum zeigt Peaks an der Stelle der Fallenzust{\"a}nde, da nur die Eigenfunktionen der Fallenzust{\"a}nde große Franck-Condon-Faktoren mit der Anfangswellenfunktion besitzen. Verschiedene Kombinationen der Dissipationsparameter f{\"u}hren zu {\"A}nderungen der relativen Peakintensit{\"a}ten und der Peakbreiten. Die 2D-Spektren des Ladungstransfersystems werden st{\"o}rungstheoretisch {\"u}ber die Polarisation dritter Ordnung berechnet. Sie zeigen viele eng nebeneinander liegende Peaks in einer schachbrettmusterf{\"o}rmigen Anordnung, die sich auf {\"U}berg{\"a}nge unter Mitwirkung der Fallenzust{\"a}nde zur{\"u}ckf{\"u}hren lassen. H{\"o}here System-Bad-Kopplungen f{\"u}hren aufgrund der effizienten Energiedissipation zu einer Verschiebung zu kleineren Energien. Peaks, die mit schneller zerfallenden Fallenzust{\"a}nden korrespondieren, bleichen schneller aus. H{\"o}here Dephasierungskonstanten resultieren in verbreiterten Peaks. Um den Einfluss der Dissipation genauer zu charakterisieren, wurden gefilterte 2D-Spektren betrachtet. Dazu wurden Ausschnitte der Polarisation dritter Ordnung zu verschiedenen Zeiten fouriertransformiert. L{\"a}ngere Zeiten f{\"u}hren zu einer effektiveren Energierelaxation entlang der entsprechenden Zeitvariablen. Die Entv{\"o}lkerung der h{\"o}her liegenden Zust{\"a}nde l{\"a}sst sich somit zeit- und energieaufgel{\"o}st betrachten. Weiterhin wurde gezeigt, dass sich der Zerfall eines einzelnen Peaks mit dem Populationsabfall des damit korrespondierenden Eigenzustandes in Einklang bringen l{\"a}sst, obwohl die Zuordnung der Peaks im 2D-Spektrum zu {\"U}berg{\"a}ngen zwischen definierten Eigenzust{\"a}nden nicht eindeutig ist. Mit dem benutzten eindimensionalen Modell k{\"o}nnen auch Ladungstransferprozesse in organischen gemischtvalenten Verbindungen beschrieben werden. Es wurde die Frage untersucht, welche Prozesse nach einem optisch induzierten Energietransfer in solchen Systemen ablaufen. Experimentelle Daten (aufgenommen im Arbeitskreis von Prof. Lambert) deuten auf eine schnelle interne Konversion (IC) gefolgt von Thermalisierung hin. Um dies theoretisch zu {\"u}berpr{\"u}fen, wurden Absorptionsspektren bei verschiedenen Temperaturen berechnet und mit den gemessenen transienten Spektren verglichen. Es findet sich, abh{\"a}ngig von der St{\"a}rke der elektronischen Kopplung, eine sehr gute bis gute {\"U}bereinstimmung, was die Annahme eines schnellen ICs st{\"u}tzt. Im letzten Teil der Arbeit wurden vibronische 2D-Spektren von molekularen Aggregaten betrachtet. Dazu wurde die zeitabh{\"a}ngige Schr{\"o}dingergleichung f{\"u}r ein Monomer-, Dimer- und Trimersystem mit der Multi-Configuration Time-Dependent Hartree-Methode gel{\"o}st und die Polarisation nicht-st{\"o}rungstheoretisch berechnet. Der Hamiltonoperator des Trimers umfasst hierbei sieben gekoppelte elektronische Zust{\"a}nde und drei bzw. sechs Vibrationsfreiheitsgrade. Der betrachtete Photonenecho-Beitrag der Polarisation wurde mittels phasencodierter Laserpulse extrahiert. Die resultierenden Spektren sind geometrieabh{\"a}ngig, ein Winkel zwischen den {\"U}bergangsdipolmomenten der Monomere von 0° (180°) resultiert in einem H-Aggregat (J-Aggregat). Die Lage und Intensit{\"a}t der Peaks im rein elektronischen Trimer wurde analytisch erl{\"a}utert. Die Spektren unter Einbeziehung der Vibration zeigen eine ausgepr{\"a}gte vibronische Struktur. Es wurde gezeigt, wie die Spektren f{\"u}r h{\"o}here Aggregationsgrade durch die h{\"o}here Dichte an vibronischen Zust{\"a}nden komplexer werden. Im J-Aggregat ist mit zunehmender Aggregation eine st{\"a}rkere Rotverschiebung zu sehen. Das Spektrum des H-Aggregats zeigt eine im Vergleich zum J-Aggregat kompliziertere Struktur. Die Verwendung zweier Vibrationsfreiheitsgrade je Monomer f{\"u}hrt zu Spektren mit {\"u}berlappenden Peaks und einer zus{\"a}tzlichen vibronischen Progression. Der Vergleich von Spektren verschiedener Mischungen von Monomer, Dimer und Trimer, entsprechend einem von Temperatur und Konzentration abh{\"a}ngigen Aggregationsgrad, zeigt den Einfluss dieser experimentellen Faktoren. Schließlich wurden m{\"o}gliche Ans{\"a}tze aufgezeigt, anhand der Spektren auf den Aggregationsgrad zu schließen.}, subject = {Quantenmechanik}, language = {de} } @phdthesis{Gershberg2016, author = {Gershberg, Jana}, title = {Self-assembled Perylene Bisimide Dimers and their Interaction with Double-stranded DNA}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136725}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The self-assembly of molecules based on π-π-interactions and hydrogen bonding is of significant importance in nature. These processes enable the formation of complex supramolecular structures with diverse functions. For the transfer of the concepts from nature to artificial supramolecular structures, a basic understanding of those processes is needed. For this purpose, π-conjugated aromatic molecules with an easy synthetic access are suitable as their functionalities can be changed effortless. Perylene bisimide (PBIs) dyes are attractive candidates since they fulfill these requirements owing to their tendency to self-assemble in solution due to their large aromatic π-surfaces. Furthermore, the changes of the optical properties (for instance absorption, emission or circular dichroism) of PBI dyes, caused by their self-assembly, are easy to study experimentally. Structural variations of PBI dyes including additional non-covalent interactions, such as hydro-gen bonding, enable to direct their self-assembly process. Thus, the formation of interesting su-pramolecular structures of PBI dyes could be realized, although, often of undefined size. The aim of this thesis was to develop strategies to restrict the aggregate size of PBI dyes. Therefore, de-fined structural features of PBI molecules were combined and a variation of external influences such as solvent and concentration included. Furthermore, DNA was utilized as a template for the limitation of the aggregate size of PBI dyes. Chapters 1 and 2 provide general information and describe examples from literature which are necessary to understand the following experimental work. The first chapter is based on the inter-actions of various molecules with DNA. Therefore, DNA is considered as a supramolecular biom-acromolecule containing specific structural and functional features to interact with small mole-cules. Afterwards, the main interaction modes of small molecules with DNA such as electrostatic interaction, intercalation and groove binding with corresponding examples are discussed. Among all techniques applied to study the interaction of ligands with DNA, UV/Vis absorption, fluores-cence and circular dichroism spectroscopy were described in detail. At the end of this chapter, examples of already pre-associated systems showing interactions with DNA are presented. The second chapter is focused on the determination and mathematic evaluation of the self-assembly processes. The simplest models such as monomer-dimer and isodesmic model are de-scribed and supplemented by examples. Furthermore, the simplest modification of the isodesmic model, the K2-K model, is presented. Additionally, experimental problems, which may arise dur-ing the investigations of the self-assembly processes, are addressed. For the description of the entire self-assembly process, a sufficiently large concentration range and an appropriate measure-ment method that is sensitive in this concentration range is necessary. Furthermore, the full transi-tion from the monomeric to the aggregated species has to be spectroscopically ascertainable. This enables an accurate mathematic evaluation of the self-assembly process and provides meaningful binding constants. The self-assembly pathway can be controlled by the variation of solvent, con-centration or temperature. However, this pathway can also be directed by a rational design of the molecular structure of the considered system. For example, a specific interplay of π-π-interactions and hydrogen bonding may promote isodesmic as well as cooperative growth into large struc-tures. The main focus of this thesis is to develop strategies to control the aggregate size of PBI dyes (Chapter 3). For this purpose, a PBI scaffold was designed which contains hydrogen bonding amide functions at the imide positions derived from the amino acid L-alanine and solubilizing side groups in the periphery (Figure 81). The variations of the residues R/R' range from didodecylox-yphenyl, didodecylphenyl, dioligo(ethylene glycol)phenyl to branched and linear alkyl chains. The most extensive study of the aggregation behavior was performed for the PBI dye 5. Concen-tration-dependent 1H NMR and UV/Vis absorption measurements clearly revealed the formation of dimers in chloroform. Further investigations by means of 2D NMR, VPO and ITC confirmed the exclusive presence of dimer aggregates of PBI 5 in the investigated concentration range. Mo-lecular modelling studies, supported by NMR and FT-IR experiments, provided structural reasons for the absence of further growth into larger aggregates. The specific combination of π-π interac-tions and hydrogen bonds between the NH groups of the amide groups and the carbonyl oxygen atoms of the PBI core are decisive for the formation of the discrete dimer stack (see Figure 82). The investigations of the aggregation behavior of PBIs 6-9 were less extensive but consistent with the results obtained for PBI 5. However, the determined binding constants vary over a considera-ble range of 1.1 x 102 M-1 (PBI 8) to 1.4 x 104 M-1 (PBI 5). These differences could be attributed to structural variations of the dyes. The electron-rich phenyl substituent promoted the aggregation tendency of PBIs 5-7 compared with 8 and 9 that carry only alkyl side chains. Thus, the π-π in-teractions of bay-unsubstituted PBI cores in combination with hydrogen bonding of the amide functions control the formation of discrete dimers of these PBI dyes. The variation of conditions, such as solvent, change the aggregation behavior of PBI dyes. In the solvents toluene and/or methylcyclohexane, anti-cooperative growth into larger aggregates of PBI 5 was observed (Chapter 4). The important feature of this self-assembly process is the absence of isosbestic points over the whole concentration range in the UV/Vis absorption measurements. The preference for the dimeric species of PBI 5 remained in both solvents as well as in mixtures of them, but upon increasing the concentration these dimers self-assemble into larger aggregates. An important feature of the self-assembly process is the preferred formation of even-numbered aggregates compared to the odd-numbered ones (see Figure 83). Although, the conventional K2-K model provides plausible binding constants, it is not capable to describe the aggregation behavior adequately, since it considers a continuous size distribution. The gradual aggregation process over dimers, tetramers, hexamers, etc. was therefore analyzed with a newly developed K2-K model for anti-cooperative supramolecular polymerization. By the global analysis of the UV/Vis absorption spectra a very good agreement between the experimental and simulated spectra, which were based on the new K2-K model, was obtained. Furthermore, the calculated UV/Vis absorption spectra of a dimer and an aggregate highlighted the most important structural differences. The absorption spectrum of the dimer still has a pronounced vibronic structure which gets lost in the spectrum of the aggregate. In another part of this work, a series of water soluble PBI dyes were described which contain similar PBI scaffolds as PBIs 5-8 (Chapter 5). These PBI dyes self-assemble into similar dimer aggregates in water due to their positively charged side chains causing electrostatic repulsion be-tween the molecules (see Figure 84). Here, however, the self-assembly behavior has not been studied thoroughly in water due to the similarities of already reported PBI dyes. Instead, the focus here is on the characterization of the interactions of these dyes with DNA/RNA. The comprehensive studies using thermal denaturation experiments showed the high stability of these PBI/polynucleotide complexes. The spermine-functionalized PBI dyes having six positive charges showed strong interactions with DNA/RNA which was expressed in a signif-icant increase of the melting temperatures of DNA/RNA (ΔTm values between 7 and > 35 ° C). The dioxa analogues containing only two positive charges had lower enhancement of the melting temperature of DNA/RNA (ΔTm values between 3 and 30 ° C). A similar trend has been observed in the fluorimetric titrations. The spermine-functionalized PBI dyes showed high binding con-stants (log Ks = 9.2 - 9.8), independently of the used polynucleotides. In contrast, the dioxa ana-logues displayed smaller binding constants (log Ks = 6.5 - 7.9) without any correlation between binding affinity and binding strength of the PBI dyes and the applied polynucleotides. The CD-spectroscopic measurements revealed significant differences in the binding properties of the dyes with DNA/RNA. They were dependent on the steric hindrance of the amino acid residues at the imide position and their configuration on one side and the grooves properties of ds-DNA/RNA on the other side. The spectroscopic results confirmed the formation of excitonically coupled PBI dimers in the minor groove of ds-DNA and the major groove of ds-RNA. Depending on the se-quence, the grooves of the polynucleotides provide different amount of space for embedding molecules. The guanine amino groups protrude into the minor groove of the polynucleotide poly(dG-dC)2 increasing the steric hindrance, which is not the case for poly(dA-dT)2. Molecular modeling studies showed that the PBI dimers penetrate deeper into the groove of poly(dA-dT)2 due to the absence of the steric hindrance, in comparison to the groove of poly(dG-dC)2 (see Figure 85).}, subject = {Perylentetracarbons{\"a}urederivate}, language = {en} }