@phdthesis{Lorenz2018, author = {Lorenz, Viola}, title = {Cellular regulation of the hemITAM-coupled platelet receptor C-type lectin-like receptor 2 (CLEC-2): In vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelet aggregation at sites of vascular injury is essential to limit posttraumatic blood loss, but may also cause acute ischemic disease states such as myocardial infarction or stroke. Stable thrombus formation requires a series of molecular events involving platelet receptors and intracellular signal transduction, which contribute to adhesion, activation and aggregation of platelets. In this thesis, the cellular regulation of platelet surface receptors and their involvement in thrombus formation was investigated using genetically modified mice. In the first part of the study, the functional relevance of the immunoreceptor tyrosine-based activation motif (ITAM)-coupled collagen receptor GPVI and of the recently identified hemITAM-bearing C-type lectin-like receptor 2 (CLEC-2) for in vivo thrombus formation was analyzed. Megakaryocyte/ platelet-specific CLEC-2 knock out mice displayed a defective lymphatic development and were protected from occlusive arterial thrombus formation. These phenotypes were more pronounced in mice with a GPVI/CLEC-2 double deficiency. Hemostasis was not compromised in CLEC-2 or GPVI single-deficient animals, as they showed only mildly prolonged tail bleeding times. Combined depletion of both receptors resulted in markedly prolonged bleeding times revealing an unexpected redundant function of the two receptors in hemostasis as well as thrombosis. These findings might have important implications for the development of anti-CLEC-2/ anti-GPVI agents as therapeutics. In the second part, mechanisms underlying the cellular regulation of CLEC-2 were studied. Previous studies have shown that injection of the anti-CLEC-2 antibody INU1 results in complete immunodepletion of platelet CLEC-2 in mice, which is preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. It is demonstrated that INU1-induced CLEC-2 immunodepletion occurs through Src family kinase (SFK)-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with spleen tyrosine kinase (Syk) deficiency, INU1-induced CLEC-2 internalization/ degradation was fully preserved, whereas the associated thrombocytopenia was largely prevented. These results show that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia. Since INU1 IgG induced a pronounced thrombocytopenia, the in vivo effects of monovalent INU1 F(ab) fragments were analyzed. Very unexpectedly, injection of the F(ab) fragments resulted in widespread thrombus formation leading to persistent neurological deficits of the animals. This intravascular thrombus formation is the result of CLEC-2-dependent platelet activation and aggregation. The mechanism underlying the thrombus formation is still unknown and depends potentially on binding of a yet unidentified ligand to F(ab)-opsonized CLEC-2 on platelets.}, subject = {Thrombozytenaggregation}, language = {en} }