@phdthesis{Kerner2021, author = {Kerner, Florian Tobias}, title = {Reactions of rhodium(I) with diynes and studies of the photophysical behavior of the luminescent products}, doi = {10.25972/OPUS-20910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209107}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 deals with the reaction of [Rh(acac)(PMe3)2] with para-substituted 1,4-diphenylbuta-1,3-diynes at room temperature, in which a complex containing a bidentate organic fulvene moiety, composed of two diynes, σ-bound to the rhodium center is formed in an all-carbon [3+2] type cyclization reaction. In addition, a complex containing an organic indene moiety, composed of three diynes, attached to the rhodium center in a bis-σ-manner is formed in a [3+2+3] cyclization process. Reactions at 100 °C reveal that the third diyne inserts between the rhodium center and the bis-σ-bound organic fulvene moiety. Furthermore, the formation of a 2,5- and a 2,4-bis(arylethynyl)rhodacyclopentadiene is observed. The unique [3+2] cyclization product was used for the synthesis of a highly conjugated organic molecule, which is hard to access or even inaccessible by conventional methods. Thus, at elevated temperatures, reaction of the [3+2] product with para-tolyl isocyanate led to the formation of a purple organic compound containing the organic fulvene structure and one equivalent of para-tolyl isocyanate. The blue and green [3+2+3] complexes show an unusually broad absorption from 500 - 1000 nm with extinction coefficients ε of up to 11000 M-1 cm-1. The purple organic molecule shows an absorption spectrum similar to those of known diketopyrrolopyrroles. Additionally, the reaction of [Rh(acac)(PMe3)2] with para-tolyl isocyanate was investigated. A cis-phosphine complex of the form cis-[Rh(acac)(PMe3)2(isocyanate)2] with an isocyanate dimer bound to the rhodium center by one carbon and one oxygen atom was isolated. Replacing the trimethylphosphine ligands in [Rh(acac)(PMe3)2] with the stronger σ-donating NHC ligand Me2Im (1,3-dimethylimidazolin-2-ylidene), again, drastically alters the reaction. Similar [3+2] and [3+2+3] products to those discussed above could not be unambiguously assigned, but cis- and trans-π-complexes, which are in an equilibrium with the two starting materials, were formed. Chapters 2 is about the influence of the backbone of the α,ω-diynes on the formation and photophysical properties of 2,5-bis(aryl)rhodacyclopentadienes. Therefore, different α,ω-diynes were reacted with [Rh(acac)(PMe3)2] and [Rh(acac)(P(p-tolyl)3)2] in equimolar amounts. In general, a faster consumption of the rhodium(I) starting material is observed while using preorganized α,ω-diynes with electron withdrawing substituents in the backbone. The isolated PMe3-substituted rhodacyclopentadienes exhibit fluorescence, despite the presence of the heavy atom rhodium, with lifetimes τF of < 1 ns and photoluminescence quantum yields Φ of < 0.01 as in previously reported P(p-tolyl)-substituted 2,5-bis(arylethynyl)rhodacyclopentadienes. However, an isolated P(p-tolyl)-substituted 2,5-bis(aryl)rhodacyclopentadiene shows multiple lifetimes and different absorption and excitation spectra leading to the conclusion that different species may be present. Reaction of [Rh(acac)(Me2Im)2] with dimethyl 4,4'-(naphthalene-1,8-diylbis(ethyne-2,1-diyl))dibenzoate, results in the formation of a mixture trans- and cis-NHC-substituted 2,5-bis(aryl)rhodacyclopentadienes. In chapter 3 the reaction of various acac- and diethyldithiocarbamate-substituted rhodium(I) catalysts bearing (chelating)phosphines with α,ω-bis(arylethynyl)alkanes (α,ω-diynes), yielding luminescent dimers and trimers, is described. The photophysical properties of dimers and trimers of the α,ω-diynes were investigated and compared to para-terphenyl, showing a lower quantum yield and a larger apparent Stokes shift. Furthermore, a bimetallic rhodium(I) complex of the form [Rh2(ox)(P(p-tolyl)3)4] (ox: oxalate) was reacted with a CO2Me-substituted α,ω-tetrayne forming a complex in which only one rhodium(I) center reacts with the α,ω-tetrayne. The photophysical properties of this mixed rhodium(I)/(III) species shows only negligible differences compared to the P(p-tolyl)- and CO2Me-substituted 2,5-bis(arylethynyl)rhodacyclopentadiene, previously synthesized by Marder and co-workers.}, subject = {{\"U}bergangsmetallkomplexe}, language = {en} } @phdthesis{Yang2021, author = {Yang, Tao}, title = {Functional insights into the role of a bacterial virulence factor and a host factor in Neisseria gonorrhoeae infection}, doi = {10.25972/OPUS-20895}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208959}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Neisseria gonorrhoeae (GC) is a human specific pathogenic bacterium. Currently, N. gonorrhoeae developed resistance to virtually all the available antibiotics used for treatment. N. gonorrhoeae starts infection by colonizing the cell surface, followed by invasion of the host cell, intracellular persistence, transcytosis and exit into the subepithelial space. Subepithelial bacteria can reach the bloodstream and disseminate to other tissues causing systemic infections, which leads to serious conditions such as arthritis and pneumonia. A number of studies have well established the host-pathogen interactions during the initial adherence and invasion steps. However, the mechanism of intracellular survival and traversal is poorly understood so far. Hence, identification of novel bacterial virulence factors and host factors involved in the host-pathogen interaction is a crucial step in understanding disease development and uncovering novel therapeutic approaches. Besides, most of the previous studies about N. gonorrhoeae were performed in the conventional cell culture. Although they have provided insights into host-pathogen interactions, much information about the native infection microenvironment, such as cell polarization and barrier function, is still missing. This work focused on determining the function of novel bacterial virulence factor NGFG_01605 and host factor (FLCN) in gonococcal infection. NGFG_01605 was identified by Tn5 transposon library screening. It is a putative U32 protease. Unlike other proteins in this family, it is not secreted and has no ex vivo protease activity. NGFG_01605 knockout decreases gonococcal survival in the epithelial cell. 3D models based on T84 cell was developed for the bacterial transmigration assay. NGFG_01605 knockout does not affect gonococcal transmigration. The novel host factor FLCN was identified by shRNA library screening in search for factors that affected gonococcal adherence and/or internalization. We discovered that FLCN did not affect N. gonorrhoeae adherence and invasion but was essential for bacterial survival. Since programmed cell death is a host defence mechanism against intracellular pathogens, we further explored apoptosis and autophagy upon gonococcal infection and determined that FLCN did not affect apoptosis but inhibited autophagy. Moreover, we found that FLCN inhibited the expression of E-cadherin. Knockdown of E- cadherin decreased the autophagy flux and supported N. gonorrhoeae survival. Both non-polarized and polarized cells are present in the cervix, and additionally, E-cadherin represents different polarization properties on these different cells. Therefore, we established 3-D models to better understand the functions of FLCN. We discovered that FLCN was critical for N. gonorrhoeae survival in the 3-D environment as well, but not through inhibiting autophagy. Furthermore, FLCN inhibits the E-cadherin expression and disturbs its polarization in the 3-D models. Since N. gonorrhoeae can cross the epithelial cell barriers through both cell-cell junctions and transcellular migration, we further explored the roles FLCN and E-cadherin played in transmigration. FLCN delayed N. gonorrhoeae transmigration, whereas the knockdown of E-cadherin increased N. gonorrhoeae transmigration. In summary, we revealed roles of the NGFG_01605 and FLCN-E-cadherin axis play in N. gonorrhoeae infection, particularly in relation to intracellular survival and transmigration. This is also the first study that connects FLCN and human-specific pathogen infection.}, language = {en} } @phdthesis{Klein2021, author = {Klein, Thomas}, title = {Establishing an in vitro disease model for Fabry Disease using patient specific induced pluripotent stem cell-derived sensory neurons}, doi = {10.25972/OPUS-19970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of the α-galactosidase A (GLA), leading to intracellular accumulations of globotriaosylceramide (Gb3). Acral burning pain, which can be triggered by heat, fever or physical activity is an early hallmark of FD and greatly reduces patients' quality of life. The pathophysiology of FD pain is unknown and research is hindered by the limited in vivo availability of suitable human biomaterial. To overcome this obstacle, we generated induced pluripotent stem cells (iPSC) from one female and two male patients with a differing pain phenotype, and developed a refined differentiation protocol for sensory neurons to increase reliability and survival of these neurons, serving as an in vitro disease model. Neurons were characterized for the correct neuronal subtype using immunocytochemistry, gene expression analysis, and for their functionality using electrophysiological measurements. iPSC and sensory neurons from the male patients showed Gb3 accumulations mimicking the disease phenotype, whereas no Gb3 depositions were detected in sensory neurons derived from the female cell line, likely caused by a skewed X-chromosomal inactivation in favor of healthy GLA. Using super-resolution imaging techniques we showed that Gb3 is localized in neuronal lysosomes of male patients and in a first experiment using dSTORM microscopy we were able to visualize the neuronal membrane in great detail. To test our disease model, we treated the neurons with enzyme replacement therapy (ERT) and analyzed its effect on the cellular Gb3 load, which was reduced in the male FD-lines, compared to non-treated cells. We also identified time-dependent differences of Gb3 accumulations, of which some seemed to be resistant to ERT. We also used confocal Ca2+ imaging to investigate spontaneous neuronal network activity, but analysis of the dataset proofed to be difficult, nonetheless showing a high potential for further investigations. We revealed that neurons from a patient with pain pain are more easily excitable, compared to cells from a patient without pain and a healthy control. We provide evidence for the potential of patient-specific iPSC to generate a neuronal in vitro disease model, showing the typical molecular FD phenotype, responding to treatment, and pointing towards underlying electrophysiological mechanisms causing different pain phenotypes. Our sensory neurons are suitable for state-of-the-art microscopy techniques, opening new possibilities for an in-depth analysis of cellular changes, caused by pathological Gb3 accumulations. Taken together, our system can easily be used to investigate the effect of the different mutations of GLA on a functional and a molecular level in affected neurons.}, subject = {Induzierte pluripotente Stammzelle}, language = {en} } @phdthesis{Vollmuth2021, author = {Vollmuth, Nadine}, title = {Role of the proto-oncogene c-Myc in the development of Chlamydia trachomatis}, doi = {10.25972/OPUS-20365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chlamydia trachomatis, an obligate intracellular human pathogen, is the world's leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.}, language = {en} } @phdthesis{Konrad2021, author = {Konrad, Charlotte}, title = {Biochemische Charakterisierung von cAMP-Gradienten - Einfluss von Phosphodiesterasen}, doi = {10.25972/OPUS-20572}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205728}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclisches Adenosinmonophosphat ist ein ubiquit{\"a}rer zweiter Botenstoff zahlreicher Signalwege im menschlichen K{\"o}rper. Auf eine Vielzahl verschiedenster extrazellul{\"a}rer Signale folgt jedoch eine Erh{\"o}hung desselben intrazellul{\"a}ren Botenstoffs - cAMP. Nichtsdestotrotz schafft es die Zelle, Signalspezifit{\"a}t aufrecht zu erhalten. Ein anerkanntes, wenn auch bisher unverstandenes Modell, um dieses zu erm{\"o}glichen, ist das Prinzip der Kompartimentierung. Die Zelle besitzt demnach Areale verschieden hoher cAMP-Konzentrationen, welche lokal begrenzt einzelne Signalkaskaden beeinflussen und somit eine differenzierte Signal{\"u}bertragung erm{\"o}glichen. Eine m{\"o}gliche Ursache f{\"u}r die Ausbildung solcher Bereiche geringerer cAMP- Konzentrationen (hier als Dom{\"a}nen bezeichnet), ist die hydrolytische Aktivit{\"a}t von Phosphodiesterasen (PDEs), welche als einzige Enzyme die F{\"a}higkeiten besitzen, cAMP zu degradieren. In dieser Arbeit wird der Einfluss der cAMP-Hydrolyse verschiedener PDEs auf die Gr{\"o}ße dieser Dom{\"a}nen evaluiert und mit denen der PDE4A1 verglichen, welche bereits durch unsere Arbeitsgruppe aufgrund ihrer Gr{\"o}ße als Nanodom{\"a}nen definiert wurden. Der Fokus wird dabei auf den Einfluss von kinetischen Eigenschaften der Phosphodiesterasen gelegt. So werden eine PDE mit hoher Umsatzgeschwindigkeit (PDE2A3) und eine PDE mit hoher Substrataffinit{\"a}t (PDE8A1) verglichen. Mithilfe sogenannter Linker, Abstandshaltern definierter L{\"a}nge, werden zus{\"a}tzlich die Nanodom{\"a}nen ausgemessen, um einen direkten Zusammenhang zwischen Gr{\"o}ße und kinetischer Eigenschaft anzugeben. Die Zusammenschau der Ergebnisse zeigt, dass die maximale Umsatzgeschwindigkeit der Phosphodiesterasen direkt mit der Gr{\"o}ße der Nanodom{\"a}nen korreliert. Durch den unmittelbaren Vergleich der gesamten PDE mit ihrer katalytischen Dom{\"a}ne wird zus{\"a}tzlich der Einfluss von regulatorischen Dom{\"a}nen evaluiert. Es wird gezeigt, dass diese cAMP-Gradienten modulieren k{\"o}nnen. Bei der PDE2A3 geschieht die Modulation u.a. durch Stimulation mit cGMP, welche h{\"o}chstwahrscheinlich dosisabh{\"a}ngig ist und somit graduell verl{\"a}uft. Hiermit pr{\"a}sentieren sich die Dom{\"a}nen als dynamische Bereiche, d.h. sie k{\"o}nnen in ihrer Auspr{\"a}gung reguliert werden. In dieser Arbeit wird die Hypothese best{\"a}tigt, dass Phosphodiesterasen eine wichtige Rolle in der Kompartimentierung von cAMP spielen, die Gruppe jedoch inhomogener ist, als bislang angenommen. Die Gradienten-Bildung l{\"a}sst sich nicht bei jeder Phosphodiesterase darstellen (PDE8A1). Einige Phosphodiesterasen (PDE2A3) jedoch bilden Kompartimente, die durch externe Stimuli in ihrer Gr{\"o}ße reguliert werden k{\"o}nnen. Die Arbeit legt den Grundstein zur breiteren Charakterisierung des spezifischen Einflusses weiterer PDEs auf cAMP-Kompartimentierung, welches nicht nur das Verst{\"a}ndnis der Kompartimentierungs-Strategien voranbringt, sondern auch essentiell f{\"u}r das Verst{\"a}ndnis der Pathophysiologie zahlreicher Krankheitsbilder, aber auch f{\"u}r das Verst{\"a}ndnis bereits angewandter aber auch potentiell neuer Medikamente ist.}, subject = {Cyclo-AMP}, language = {de} } @phdthesis{Mayer2021, author = {Mayer, Alexander E.}, title = {Protein kinase D3 signaling in the regulation of liver metabolism}, doi = {10.25972/OPUS-20797}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207978}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The liver plays a pivotal role in maintaining energy homeostasis. Hepatic carbohydrate and lipid metabolism are tightly regulated in order to adapt quickly to changes in nutrient availability. Postprandially, the liver lowers the blood glucose levels and stores nutrients in form of glycogen and triglycerides (TG). In contrast, upon fasting, the liver provides glucose, TG, and ketone bodies. However, obesity resulting from a discrepancy in food intake and energy expenditure leads to abnormal fat accumulation in the liver, which is associated with the development of hepatic insulin resistance, non-alcoholic fatty liver disease, and diabetes. In this context, hepatic insulin resistance is directly linked to the accumulation of diacylglycerol (DAG) in the liver. Besides being an intermediate product of TG synthesis, DAG serves as second messenger in response to G-protein coupled receptor signaling. Protein kinase D (PKD) family members are DAG effectors that integrate multiple metabolic inputs. However, the impact of PKD signaling on liver physiology has not been studied so far. In this thesis, PKD3 was identified as the predominantly expressed isoform in liver. Stimulation of primary hepatocytes with DAG as well as high-fat diet (HFD) feeding of mice led to an activation of PKD3, indicating its relevance during obesity. HFD-fed mice lacking PKD3 specifically in hepatocytes displayed significantly improved glucose tolerance and insulin sensitivity. However, at the same time, hepatic deletion of PKD3 in mice resulted in elevated liver weight as a consequence of increased hepatic lipid accumulation. Lack of PKD3 in hepatocytes promoted sterol regulatory element-binding protein (SREBP)-mediated de novo lipogenesis in vitro and in vivo, and thus increased hepatic triglyceride and cholesterol content. Furthermore, PKD3 suppressed the activation of SREBP by impairing the activity of the insulin effectors protein kinase B (AKT) and mechanistic target of rapamycin complexes (mTORC) 1 and 2. In contrast, liver-specific overexpression of constitutive active PKD3 promoted glucose intolerance and insulin resistance. Taken together, lack of PKD3 improves hepatic insulin sensitivity but promotes hepatic lipid accumulation. For this reason, manipulating PKD3 signaling might be a valid strategy to improve hepatic lipid content or insulin sensitivity. However, the exact molecular mechanism by which PKD3 regulates hepatocytes metabolism remains unclear. Unbiased proteomic approaches were performed in order to identify PKD3 phosphorylation targets. In this process, numerous potential targets of PKD3 were detected, which are implicated in different aspects of cellular metabolism. Among other hits, phenylalanine hydroxylase (PAH) was identified as a target of PKD3 in hepatocytes. PAH is the enzyme that is responsible for the conversion of phenylalanine to tyrosine. In fact, manipulation of PKD3 activity using genetic tools confirmed that PKD3 promotes PAH-dependent conversion of phenylalanine to tyrosine. Therefore, the data in this thesis suggests that PKD3 coordinates lipid and amino acid metabolism in the liver and contributes to the development of hepatic dysfunction.}, subject = {Metabolismus}, language = {en} } @phdthesis{Herz2021, author = {Herz, Michaela}, title = {Genome wide expression profiling of Echinococcus multilocularis}, doi = {10.25972/OPUS-20380}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Alveolar echinococcosis, which is caused by the metacestode stage of the small fox tapeworm Echinococcus multilocularis, is a severe zoonotic disease with limited treatment options. For a better understanding of cestode biology the genome of E. multilocularis, together with other cestode genomes, was sequenced previously. While a few studies were undertaken to explore the E. multilocularis transcriptome, a comprehensive exploration of global transcription profiles throughout life cycle stages is lacking. This work represents the so far most comprehensive analysis of the E. multilocularis transcriptome. Using RNA-Seq information from different life cycle stages and experimental conditions in three biological replicates, transcriptional differences were qualitatively and quantitatively explored. The analyzed datasets are based on samples of metacestodes cultivated under aerobic and anaerobic conditions as well as metacestodes obtained directly from infected jirds. Other samples are stem cell cultures at three different time points of development as well as non-activated and activated protoscoleces, the larval stage that can develop into adult worms. In addition, two datasets of metacestodes under experimental conditions suitable for the detection of genes that are expressed in stem cells, the so-called germinative cells, and one dataset from a siRNA experiment were analyzed. Analysis of these datasets led to expression profiles for all annotated genes, including genes that are expressed in the tegument of metacestodes and play a role in host-parasite interactions and modulation of the host's immune response. Gene expression profiles provide also further information about genes that might be responsible for the infiltrative growth of the parasite in the liver. Furthermore, germinative cell-specific genes were identified. Germinative cells are the only proliferating cells in E. multilocularis and therefore of utmost importance for the development and growth of the parasite. Using a combination of germinative cell depletion and enrichment methods, genes with specific expression in germinative cells were identified. As expected, many of these genes are involved in translation, cell cycle regulation or DNA replication and repair. Also identified were transcription factors, many of which are involved in cell fate commitment. As an example, the gene encoding the telomerase reverse transcriptase (TERT) was studied further. Expression of E. multilocularis tert in germinative cells was confirmed experimentally. Cell culture experiments indicate that TERT is required for proliferation and development of the parasite, which makes TERT a potentially interesting drug target for chemotherapy of alveolar echinococcosis. Germinative cell specific genes in E. multilocularis also include genes of densoviral origin. More than 20 individual densovirus loci with information for non-structural and structural densovirus proteins were identified in the E. multilocularis genome. Densoviral elements were also detected in many other cestode genomes. Genomic integration of these elements suggests that densovirus-based vectors might be suitable tools for genetic manipulation of tapeworms. Interestingly, only three of more than 20 densovirus loci in the E. multilocularis genome are expressed. Since the canonical piRNA pathway is lacking in cestodes, this raises the question about potential silencing mechanisms. Exploration of RNA-Seq information indicated natural antisense transcripts as a potential gene regulation mechanism in E. multilocularis. Preliminary experiments further suggest DNA-methylation, which was previously shown to occur in platyhelminthes, as an interesting avenue to explore in future. The transcriptome datasets also contain information about genes that are expressed in differentiated cells, for example the serotonin transporter gene that is expressed in nerve cells. Cell culture experiments indicate that serotonin and serotonin transport play an important role in E. multilocularis proliferation, development and survival. Overall, this work provides a comprehensive transcription data atlas throughout the E. multilocularis life cycle. Identification of germinative cell-specific genes and genes important for host-parasite interactions will greatly facilitate future research. A global overview of gene expression profiles will also aide in the detection of suitable drug targets and the development of new chemotherapeutics against alveolar echinococcosis.}, subject = {Fuchsbandwurm}, language = {en} } @phdthesis{LiessneeEller2021, author = {Liess [n{\´e}e Eller], Anna Katharina Luise}, title = {Understanding the regulation of the ubiquitin-conjugating enzyme UBE2S}, doi = {10.25972/OPUS-20419}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The ubiquitination of proteins serves as molecular signal to control an enormous number of physiological processes and its dysregulation is connected to human diseases like cancer. The versatility of this signal stems from the diverse ways by which ubiquitin can be attached to its targets. Thus, specificity and tight regulation of the ubiquitination are pivotal requirements of ubiquitin signaling. Ubiquitin-conjugating enzymes (E2s) act at the heart of the ubiquitination cascade, transferring ubiquitin from a ubiquitin-activating enzyme (E1) to a ubiquitin ligase (E3) or substrate. When cooperating with a RING-type E3, ubiquitin-conjugating enzymes can determine linkage specificity in ubiquitin chain formation. Our understanding of the regulation of E2 activities is still limited at a structural level. The work described here identifies two regulation mechanisms in UBE2S, a cognate E2 of the human RING-type E3 anaphase-promoting complex/cyclosome (APC/C). UBE2S elongates ubiquitin chains on APC/C substrates in a Lys11 linkage-specific manner, thereby targeting these substrates for degradation and driving mitotic progression. In addition, UBE2S was found to have a role in DNA repair by enhancing non-homologous end-joining (NHEJ) and causing transcriptional arrest at DNA damage sites in homologous recombination (HR). Furthermore, UBE2S overexpression is a characteristic feature of many cancer types and is connected to poor prognosis and diminished response to therapy. The first regulatory mechanism uncovered in this thesis involves the intramolecular auto-ubiquitination of a particular lysine residue (Lys+5) close to the active site cysteine, presumably through conformational flexibility of the active site region. The Lys+5-linked ubiquitin molecule adopts a donor-like, 'closed' orientation towards UBE2S, thereby conferring auto-inhibition. Notably, Lys+5 is a major physiological ubiquitination site in ~25\% of the human E2 enzymes, thus providing regulatory opportunities beyond UBE2S. Besides the active, monomeric state and the auto-inhibited state caused by auto-ubiquitination, I discovered that UBE2S can adopt a dimeric state. The latter also provides an auto-inhibited state, in which ubiquitin transfer is blocked via the obstruction of donor binding. UBE2S dimerization is promoted by its unique C-terminal extension, suppresses auto-ubiquitination and thereby the proteasomal degradation of UBE2S. Taken together, the data provided in this thesis illustrate the intricate ways by which UBE2S activity is fine-tuned and the notion that structurally diverse mechanisms have evolved to restrict the first step in the catalytic cycle of E2 enzymes.}, subject = {E2}, language = {en} } @phdthesis{Dannhaeuser2021, author = {Dannh{\"a}user, Sven}, title = {Function of the Drosophila adhesion-GPCR Latrophilin/CIRL in nociception and neuropathy}, doi = {10.25972/OPUS-20158}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201580}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology. Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family - not only in classical mechanosensory structures. This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function. The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons - a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology.}, subject = {Drosophila}, language = {en} } @phdthesis{Geiger2021, author = {Geiger, Ute}, title = {Erfassung der intraoperativen Ankopplungseffizienz mittels evozierten Potentialen bei mit Mittelohrimplantat versorgten Patienten}, doi = {10.25972/OPUS-20106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201068}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Patienten mit leicht bis hochgradigen Schallleitungs-, Schallempfindungs- und kombinierten Schwerh{\"o}rigkeiten werden routinem{\"a}ßig nach erfolglosem H{\"o}rger{\"a}tetrageversuch mit aktiven Mittelohrimplantaten versorgt. Aktive Mittelohrimplantate k{\"o}nnen an verschiedene Strukturen des Mittelohrs angekoppelt werden. Der Ort der Ankopplung ist abh{\"a}ngig vom H{\"o}rverlust und der individuellen Physiologie des Mittelohres. Die H{\"o}rverbesserung ist dabei stark von der Kopplungseffizienz des Implantatwandlers an die Mittelohrstruktur abh{\"a}ngig. Aktuell gibt es keine zufriedenstellende M{\"o}glichkeit die Kopplungseffizienz intraoperativ zu bestimmen. Daher wird eine objektive Methode eingef{\"u}hrt, um intraoperativ auditorische Hirnstammantworten (BERAs) bei Stimulation {\"u}ber das Implantat abzuleiten. Die Vibrant Soundbrigde® (VSB) wird dabei mit einem Drahtlos{\"u}bertr{\"a}ger (miniTEK, Signia GmbH, Erlangen) und der Carina®-Aktuator {\"u}ber ein Audiokabel mit der BERA-Anlage verbunden. Die BERA-Anlage {\"u}bertr{\"a}gt die Stimuli direkt an das Implantat, welches an die Mittelohrstruktur angekoppelt ist. Die BERA-Antworten werden bei der VSB durch einen optimierten VSB-CE-Chirp und beim Carina®-System durch den Standard CE-Chirp evoziert, beginnend bei Pegeln oberhalb der Knochenleitungsh{\"o}rschwelle bis unter die Registrierungsschwelle. Diese Methode kann die intraoperative Integrit{\"a}t des Implantats sowie die Kopplungseffizienz bestimmen, um eine Aussage {\"u}ber den zu erwartenden H{\"o}rerfolg treffen zu k{\"o}nnen. Dar{\"u}ber hinaus kann die versorgte H{\"o}rschwelle verwendet werden, um die Anpassung bei Kindern oder schwierigen F{\"a}llen zu unterst{\"u}tzen und um eine H{\"o}rverschlechterung {\"u}ber die Zeit zu erfassen. Zusammenfassend, konnte eine Methode zur Bestimmung der intraoperativen Kopplungseffizienz w{\"a}hrend der Implantation von VSBs und Carinas® etabliert werden. Dar{\"u}ber hinaus werden intraoperative BERA-Daten von 30 VSB- und 10-Carina®-Patienten sowie deren H{\"o}rergebnisse gezeigt.}, subject = {Mittelohrimplantat}, language = {de} }