@phdthesis{Baumgaertner2023, author = {Baumg{\"a}rtner, Kiana Jasmin}, title = {Spectroscopic Investigation of the Transient Interplay at Hybrid Molecule-Substrate Interfaces after Photoexcitation: Ultrafast Electronic and Atomic Rearrangements}, doi = {10.25972/OPUS-33053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-330531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This thesis is aimed at establishing modalities of time-resolved photoelectron spectroscopy (tr-PES) conducted at a free-electron laser (FEL) source and at a high harmonic generation (HHG) source for imaging the motion of atoms, charge and energy at photoexcited hybrid organic/inorganic interfaces. Transfer of charge and energy across interfaces lies at the heart of surface science and device physics and involves a complex interplay between the motion of electrons and atoms. At hybrid organic/inorganic interfaces involving planar molecules, such as pentacene and copper(II)-phthalocyanine (CuPc), atomic motions in out-of-plane direction are particularly apparent. Such hybrid interfaces are of importance to, e.g., next-generation functional devices, smart catalytic surfaces and molecular machines. In this work, two hybrid interfaces - pentacene atop Ag(110) and copper(II)-phthalocyanine (CuPc) atop titanium disulfide (1T-TiSe2) - are characterized by means of modalities of tr-PES. The experiments were conducted at a HHG source and at the FEL source FLASH at Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany). Both sources provide photon pulses with temporal widths of ∼ 100 fs and thus allow for resolving the non-equilibrium dynamics at hybrid interfaces involving both electronic and atomic motion on their intrinsic time scales. While the photon energy at this HHG source is limited to the UV-range, photon energies can be tuned from the UV-range to the soft x-ray-range at FLASH. With this increased energy range, not only macroscopic electronic information can be accessed from the sample's valence and conduction states, but also site-specific structural and chemical information encoded in the core-level signatures becomes accessible. Here, the combined information from the valence band and core-level dynamics is obtained by performing time- and angle-resolved photoelectron spectroscopy (tr-ARPES) in the UV-range and subsequently performing time-resolved x-ray photoelectron spectroscopy (tr-XPS) and time-resolved photoelectron diffraction (tr-XPD) in the soft x-ray regime in the same experimental setup. The sample's bandstructure in energy-momentum space and time is captured by a time-of-flight momentum microscope with femtosecond temporal and sub-{\AA}ngstr{\"o}m spatial resolutions. In the investigated systems, out-of-equilibrium dynamics are traced that are connected to the transfer of charge and energy across the hybrid interfaces. While energetic shifts and complementary population dynamics are observed for molecular and substrate states, the shapes of involved molecular orbitals change in energy-momentum space on a subpicosecond time scale. In combination with theory support, these changes are attributed to iiiatomic reorganizations at the interface and transient molecular structures are reconstructed with sub-{\AA}ngstr{\"o}m precision. Unique to the material combination of CuPc/TiSe2, a structural rearrangement on the macroscopic scale is traced simultaneously: ∼ 60 \% of the molecules undergo a concerted, unidirectional in-plane rotation. This surprising observation and its origin are detailed in this thesis and connected to a particularly efficient charge transfer across the CuPc/TiSe2 interface, resulting in a charging of ∼ 45 \% of CuPc molecules.}, subject = {ARPES}, language = {en} } @phdthesis{Hartleb2015, author = {Hartleb, Holger Edgar Heinz Erich}, title = {Spektroelektrochemische Untersuchung von halbleitenden Kohlenstoffnanor{\"o}hren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116628}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Der Schwerpunkt dieser Arbeit lag auf der spektroelektrochemischen Untersuchung von halbleitenden SWNTs. Hierbei wurden erstmalig Absorptions- und Photolumineszenzspektren ein und derselben SWNT-Probe simultan unter elektrochemischer Potentialkontrolle aufgenommen. Hierbei konnte gezeigt werden, dass die Messmethode einen entscheidenden Einfluss auf die erhaltene Bandl{\"u}cke besitzt und der in der Literatur gepr{\"a}gte Begriff der Elektrochemischen Bandl{\"u}cke aufgrund einer fehlenden allgemeing{\"u}ltigen Definition problembehaftet ist. So ergeben Photolumineszenzmessungen im Vergleich zu Raman- oder Absorptionsmessungen die kleinste Bandl{\"u}cke. Dies wurde auf die diffusionskontrollierte L{\"o}schung der Exzitonen an Ladungszentren zur{\"u}ckgef{\"u}hrt. Weiterhin wurden die optischen Spektren von SWNTs unter Ladungseinfluss analysiert und die zugrundeliegenden {\"A}nderungen der elektronischen Eigenschaften diskutiert. Neben SWNTs wurden die {\"U}bergangsmetalldichalkogenide MoS2 und WS2 spektroelektrochemisch untersucht. Auffallend im Vergleich zu den Messungen an SWNTs war der breite Potentialbereich, {\"u}ber den die Abnahme der exzitonischen Signale zu beobachten war. Dies kann auf die unterschiedliche elektronische Struktur von TMDs und SWNTs und den geringen Anteil von Einzellagen in den TMD-Proben zur{\"u}ckgef{\"u}hrt werden. Weiterhin konnte in den Absorptionsspektren unter Ladungseinfluss ein Signal beobachtet werden, welches auf die Entstehung von Trionen hindeutet. In einem weiteren Teilprojekt wurde eine elektrochemische Zelle zur Untersuchung von metallischen SWNT-Filmen als Elektrode f{\"u}r die Wasserstoffproduktion entwickelt und getestet. Hierbei gelang es die von Das et al. publizierte Aktivierung von SWNTs mit Schwefels{\"a}ure erfolgreich nachzuvollziehen und einen katalytischen Effekt der SWNTs auf die Wasserstoffentwicklung zu beobachten.}, subject = {Kohlenstoff-Nanor{\"o}hre}, language = {de} }