@article{FischerHembergerBodietal.2013, author = {Fischer, Kathrin H. and Hemberger, Patrick and Bodi, Andras and Fischer, Ingo}, title = {Photoionisation of the tropyl radical}, series = {Beilstein Journal of Organic Chemistry}, volume = {9}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.9.77}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128652}, pages = {681-688}, year = {2013}, abstract = {We present a study on the photoionisation of the cycloheptatrienyl (tropyl) radical, \(C_7H_7\), using tunable vacuum ultraviolet synchrotron radiation. Tropyl is generated by flash pyrolysis from bitropyl. Ions and electrons are detected in coincidence, permitting us to record mass-selected photoelectron spectra. The threshold photoelectron spectrum of tropyl, corresponding to the \(X^{+1}A1' ← X^2E_2"\) transition, reveals an ionisation energy of 6.23 ± 0.02 eV, in good agreement with Rydberg extrapolations, but slightly lower than the value derived from earlier photoelectron spectra. Several vibrations can be resolved and are reassigned to the C-C stretch mode \(ν_{16}^+\) and to a combination of \(ν_{16}^+\) with the ring breathing mode \(ν_2^+\). Above 10.55 eV dissociative photoionisation of tropyl is observed, leading to the formation of \(C_5H_5^+\) and \(C_2H_2\).}, language = {en} } @phdthesis{Fischer2013, author = {Fischer, Kathrin Helena}, title = {Analyse der chemischen Reaktionen unges{\"a}ttigter Verbindungen mit FEL- und Synchrotronstrahlung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Brilliante Strahlungsquellen werden heute vielfach in der Forschung eingesetzt um Kristallstrukturen, Oberfl{\"a}cheneigenschaften oder Reaktionen zu untersuchen. Als Strahlungsquellen werden daf{\"u}r bevorzugt Freie Elektronenlaser (FEL) oder Synchrotrons eingesetzt, da sie {\"u}ber weite Bereiche durchstimmbar sind und einen hohen Photonenfluss bereitstellen. Im Rahmen der vorliegenden Dissertation werden beide Lichtquellen verwendet um einerseits Isomere von Kohlenwasserstoffradikalen zu identifizieren und andererseits das Verhalten von Borylen und unges{\"a}ttigten Verbindungen bei Photoionisation zu dokumentieren. Als erstes Experiment am FEL wurde ein IR-Spektrum von gasf{\"o}rmigen Allylradikalen aufgenommen. Das Allyl war ein Testlauf, da es als Kohlenwasserstoffradikal mit einer kleinen Dipolmoment{\"a}nderung ein gutes Beispiel f{\"u}r {\"a}hnliche Verbindungen ist. Trotz der kleinen {\"A}nderung des Dipolmoments und der geringen Teilchendichte der Radikale in der Gasphase konnte ein gutes IR-Spektrum mit der IR-UV-Doppelresonanzmethode aufgenommen werden und die beobachteten Banden mit der Literatur zugeordnet werden. Das 3-Trifluoromethyl-3-Phenyl-carben (TFPC) wurde pyrolytisch aus 3-Trifluoromethyl-3-Phenyl-diazirin erzeugt. Dabei kam es beim Großteil der Carbene zu einer Umlagerung zu Trifluorstyrol. Neben dem Hauptprodukt Trifluorstyrol wurde das Triplett TFPC als Nebenprodukt identifiziert. Zus{\"a}tzlich wurden die Isomerisierungsbarrieren f{\"u}r den Triplett- und Singulett-{\"U}bergangszustand berechnet. Die Radikale 1-Phenylpropargyl und 3-Phenylpropargyl sind anhand ihrer IR-Spektren unterscheidbar und lagern sich nicht ineinander oder in Indenyl um. Ausgehend von beiden Radikalen bilden sich die identischen Dimerisierungsprodukte im Massenkanal m/z = 230 (p-Terphenyl) und 228 (1-Phenylethinylnaphthalin (1PEN)). Außergew{\"o}hnlich war die Exklusivit{\"a}t dieser Produkte. Somit m{\"u}ssen deren Reaktionsmechanismen kinetisch viel schneller sein. Die Massen m/z = 230 und 228 waren bereits aus einer massenspektrometrischen Studie ausgehend von Benzol und Ethin bekannt, in der ihre Struktur jedoch nicht gekl{\"a}rt wurde. Somit m{\"u}ssen die gefundenen Dimerisierungsprodukte p-Terphenyl und 1PEN wichtige Intermediate bei der Entstehung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) und Ruß sein. Von gasf{\"o}rmigen NTCDA wurde mittels der TPEPICO-Methode am Synchrotron Schwellenphotoelektronenspektren aufgenommen. Dabei konnte die adiabatische Ionisierungsenergie (IE(ad)) zu 9.66 eV bestimmt werden. Weiterhin wurden noch f{\"u}nf angeregte Zust{\"a}nde beobachtet, die mittels quantenmechanischer Berechnungen zugeordnet wurden. Es wurde die Photoionisation des Cycloheptatrienradikals (Tropyl) untersucht. Dabei wurde die erste Bande bei 6.23 eV der IE(ad) zugeordnet. Mit einer Franck-Condon Simulation wurden die beiden Schwingungsprogressionen einer CC-Streckschwingung (ν16+) und einer Kombination aus einer Ringatmung (ν2+) und ν16+ zugeordnet. Der erste Triplett- und Singulettzustand des angeregten Tropylkations konnte in {\"U}bereinstimmung mit der Literatur zugeordnet werden. Eine Schulter bei 9.85 eV und die intensivste Bande bei 11.6 eV konnten nicht eindeutig interpretiert werden. Neben dem Tropyl erscheint bei etwa 10.55 eV sein dissoziatives Zersetzungsprodukt, das Cyclopentadienylkation. Die IE(ad) des Borylenkomplex [(CO)5CrBN(SiMe3)2] wurde zu 7.1 eV bestimmt. Mit steigender Photonenenergie wurden alle CO-Liganden sequenziell abgespalten, w{\"a}hrend der Borligand auch bei 15 eV noch nicht dissoziierte. Von den f{\"u}nf abgespaltenen CO-Liganden konnte die Auftrittsenergie bei 0 K unter Ber{\"u}cksichtigung der kinetischen Verschiebung gefittet werden. Durch einen einfachen thermodynamischen Zyklus wurden aus den Auftrittsenergien der Kationen die Bindungsenergien berechnet. Dabei zeigte sich, dass die zweite Bindungsenergie im Kation erheblich st{\"a}rker ist als die erste. Dies deutet einen starken trans-Effekt des Borliganden an. In der Dissertation wurden die adiabatische Ionisierungsenergie der Molek{\"u}le sowie die Auftrittsenergien der Fragmente und die Bindungsenergien bestimmt. Zudem konnten Isomere anhand ihrer IR-Spektren unterschieden und ihre Dimerisierungsprodukte identifiziert werden. Damit wurden mit p-Terphenyl und 1PEN zwei weitere bedeutende Intermediate im Bildungsmechanismus von Ruß strukturell aufgekl{\"a}rt. Die Beteiligung dieser Dimerisierungsprodukte am Bildungsmechanismus der PAK initiiert zuk{\"u}nftige Fragen. Was geschieht z.B. mit p-Terphenyl und 1PEN nach ihrer Bildung? Reagieren sie chemisch zu gr{\"o}ßeren Molek{\"u}len oder setzt bei ihnen bereits die Akkumulation zu Partikeln ein? Zus{\"a}tzlich ist die Frage, ob Phenylpropargyl aus der Reaktion von Phenyl- und Propargylradikalen entsteht noch offen. Die erzielten Resultate haben einen wichtigen Schritt im Bildungsmechanismus der PAK identifiziert und damit die Grundlage f{\"u}r zuk{\"u}nftige Experimente gelegt.}, subject = {Synchrotronstrahlung}, language = {de} } @phdthesis{Schon2011, author = {Schon, Christof}, title = {Spektroskopie an substituierten [2.2]Paracyclophanen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65374}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Arbeit wurde der elektronische Grundzustand und der erste angeregte Zustand sowie der Zustand des Ions von substituierten [2.2]Paracyclophanen untersucht. Um die Wechselwirkungen zwischen konjugierten pi-Systemen besser zu verstehen wurden die Molek{\"u}le mit Hilfe von Resonance Enhanced Multiphoton Ionization Spektroskopie (REMPI), VUV-Synchrotronstrahlung und quantenchemischen Rechnungen untersucht. Die Experimente wurden im Molekularstrahl durchgef{\"u}hrt. In den [1+1]-REMPI-Spektren von pseudo-para-Dibrom[2.2]paracyclophan, pseudo-para-Dicyano[2.2]paracyclophan, pseudo-ortho-Dicyano[2.2]paracyclophan, pseudo-para-Diphenyl[2.2]paracyclophan und pseudo-para-Di(trimethylsilyl)[2.2]paracyclophan wird ein kontinuierlicher Signalanstieg beobachtet. Individuelle Schwingungsbanden konnte nicht aufgel{\"o}st werden. Dies ist ein Hinweis darauf, dass die Schwingungszust{\"a}nde im S1-Zustand sehr eng beieinanderliegen. Der Schwerpunkt dieser Arbeit lag auf der Untersuchung der hydroxysubstituierten [2.2]Paracyclophane pseudo-ortho-Dihydroxy[2.2]paracyclophan (o-DHPC), pseudo-para-Dihydroxy[2.2]paracyclophan (p-DHPC) und racemisches-4-Hydroxy[2.2]paracyclophan (MHPC). Die adiabatischen Ionisierungsenergien der Molek{\"u}le wurden aus der Ionenstromkurve mit Hilfe eines Wannier-Fits bestimmt: 7.56eV (o-DHPC), 7.58eV (p-DHPC) und 7.63eV (MHPC). In den Schwellenphotoelektronenspektren (TPES) werden Signalmodulationen im Photonenenergiebereich von 7.8-11eV beobachtet. Hierbei handelt es sich um angeregte Zust{\"a}nde des Kations. Bei ca. 10.5eV wird in den Spektren von allen drei hydroxysubstituierten Molek{\"u}len dissoziative Photoionisation (DPI) beobachtet. Hierbei werden die Bindungen zwischen den aliphatischen Kohlenstoff-Atomen gebrochen. Im [1+1]-REMPI-Spektrum des o-DHPCs wird der S1<-S0-{\"U}bergang bei 31483cm^-1 (3.903eV) beobachtet. Die berechnete adiabatische Anregungsenergie liegt bei 3.87eV (SCS-CC2). Der elektronische Ursprung des o-DHPCs ist +722cm^-1 blauverschoben im Vergleich zum unsubstituierten [2.2]Paracyclophan (PC). Im REMPI-Spektrum werden viele Schwingungsbanden beobachtet. Cluster des o-DHPCs mit Wasser werden ebenfalls beobachtet. Die elektronischen Urspr{\"u}nge der Cluster mit Wasser sind rotverschoben im Vergleich mit dem Monomer. Im o-DHPC(H2O)-Cluster ist das Wassermolek{\"u}l zwischen den beiden OH-Gruppen des Cyclophans {\"u}ber Wasserstoffbr{\"u}ckenbindungen fixiert. In den REMPI-Spektren des o-DHPCs und o-DHPC(H2O)-Clusters wird die Atmungsmode mit hoher Intensit{\"a}t beobachtet. Außerdem tritt eine Twist- und Tilt-Mode in den Spektren auf. Viele Kombinationsbanden der Atmungs, Twist- und Tilt-Mode werden in den Spektren beobachtet. Im [1+1]-REMPI-Spektrum des p-DHPCs werden nur kleine Signalmodulationen mit niedrigen Intensit{\"a}ten im roten Spektralbereich im Vergleich mit dem Ursprung des o-DHPCs beobachtet. Bei der Anregung des p-DHPCs kommt es zu einer großen {\"A}nderung der Struktur. Dies f{\"u}hrt dazu, dass die Franck-Condon-Faktoren f{\"u}r den S1<-S0-{\"U}bergang des p-DHPCs deutlich kleiner sind im Vergleich mit dem o-DHPC (1:10^7). Daher treten die Signale des p-DHPCs im REMPI-Spektrum nur mit geringer Intensit{\"a}t auf. Der Ursprung des S1<-S0 {\"U}bergangs des MHPCs wird im [1+1]-REMPI-Spektrum bei 30772cm^-1 (3.815eV) beobachtet. Die berechnete Anregungsenergie liegt bei 3.79eV (SCS-CC2). Im Vergleich zum unsubstituierten PC wird keine wesentliche Energieverschiebung des S1<-S0-{\"U}bergangs beobachtet. Im REMPI-Spektrum des MHPCs wird die Twist-Mode beobachtet. Die Banden zeigen eine inverse Anharmonizit{\"a}t. Die ab-initio-Rechnungen beschreiben die Potentialkurve des S1-Zustands mit einem Doppelminimum. Die H{\"o}he der Barriere zwischen den beiden Minima h{\"a}ngt vom Basissatz ab. Empirisch wurde entlang der Twist-Mode ein flaches Potential bestimmt. Die aus diesem Potenzial resultierenden Banden und Intensit{\"a}ten der Twist-Mode stimmen mit den experimentellen Beobachtungen sehr gut {\"u}berein. Die [1+1]-REMPI-Spektren des MHPCs mit einem und zwei Wassermolek{\"u}len zeigen einen kontinuierlichen Signalanstieg. Einzelne Schwingungsbanden konnten unter den experimentellen Bedingungen nicht aufgel{\"o}st werden. Der Ursprung des MHPC-Clusters mit einem Wassermolek{\"u}l beginnt bei ca. -180cm^-1 und mit zwei Wassermolek{\"u}len bei ca. -290cm^-1 im Vergleich mit dem Ursprung des Monomers.}, subject = {Paracyclophane}, language = {de} } @phdthesis{Noller2009, author = {Noller, Bastian}, title = {Excited-State Dynamics of Organic Intermediates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36075}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {This thesis gives insights into the real-time dynamics of several free carbenes and radicals on a femtosecond and nanosecond time scale. The experiments were performed with radicals, singlet carbenes and triplet carbenes of various sizes. Several neutral excited states as well as the ionic ground state were characterized. Despite the relevance of such reactive intermediates in almost all chemical reactions, only relatively little experimental information on such systems is found in the literature. This is linked to the experimental challenge of producing such species under isolated conditions. The intermediates are formed from precursor molecules under interaction- free conditions by supersonic jet flash pyrolysis. The precursor molecules were synthetically designed to show clean thermal dissociation into one specific intermediate. A large variety of spectroscopic techniques was applied to study the intermediates. Each method augments the results of the other methods. This enabled to successfully approach the main goal of this thesis: to understand the excited-state dynamics of organic intermediates. The excited states were found to deactivate rapidly to the hot ground state. The observed fast decay is presumably linked to coupled electronically excited states and relaxation takes place by internal conversion or conical intersections. Further reactions then take place on the ground state surface. Absorption spectra, photodissociation dynamics, photoelectron spectra, ionization potentials, excited-state lifetimes and dissociative photoionization were elucidated by the measurements. Pulsed and continuous light sources were used over a large spectral range (UV, Vis, VUV). A well-defined amount of energy was deposited into the molecule. After internal conversion has taken place, a microcanonical ensemble of reactive intermediates can be studied. This data helps to understand the energetics and reaction channels of intermediates. Velocity map imaging enabled to monitor the pyrolysis efficiency in real time by analyzing photoion images. This observation facilitates clean intermediate generation. Experimental results were compared to quantum chemical calculations to aid the interpretation as well as to test the performance of theoretical approaches. Hydrocarbon radicals and carbenes are regarded as benchmark systems for computational methods due to their several low-lying electronic states and open-shell electronic configuration. The experimental data can help to identify and understand the contributions of the examined intermediates to the chemistry of high energy environments (e. g., hydrocarbon cracking reactors, interstellar space and combustion chambers). Here increased numbers of hydrocarbon intermediates are often present and usually have a strong impact on the overall reaction mechanism. Such environments contain in general a complex mixture of several different intermediates. The more spectroscopic and dynamic properties of each isolated intermediate are known, the easier it is to identify it among multiple components and to understand how it contributes to the overall reaction mechanism. Electronic excitation can take place by radiation, particle collisions or thermally at very high temperatures. How excited states influence the reaction mechanisms is still a matter of currant research.}, subject = {Excited-State Dynamics of Organic Intermediates}, language = {en} }