@phdthesis{Proels2004, author = {Pr{\"o}ls, Reinhard}, title = {Regulation and function of extracellular invertases of tomato}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10260}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Wachstum und Entwicklung pflanzlicher Gewebe bedingen eine fortw{\"a}hrende Ver{\"a}nderung von Source-Sink Beziehungen. Gewebe mit einem Nettoexport (Source) oder - import (Sink) von Kohlenhydraten m{\"u}ssen ihren aktuellen Bedarf an Assimilaten entsprechend dem Entwicklungsstadium anpassen. Dar{\"u}ber hinaus haben Pflanzen als ortsgebundene Lebewesen Regulationsmechanismen entwickelt, die eine flexible Antwort der Assimilatverteilung auf spezielle Anforderungen des Habitats, wie biotische oder abiotische Stressfaktoren und wechselnde Lichtbedingungen, erm{\"o}glichen. Die Assimilatverteilung ist vielf{\"a}ltig reguliert und erfordert spezifische Enzymfunktionen, wie Zuckertransporter und saccharosespaltende Enzyme. Extrazellul{\"a}re Invertasen nehmen eine essentielle Funktion in der apoplastischen Phloementladung und in der Regulation von Source-Sink {\"U}berg{\"a}ngen ein. Dies spiegelt sich in dem Auftreten verschiedener Invertase- Isoenzyme mit speziellen Expressions- und Regulationsmustern wider, welche eine Koordination des Kohlenhydratmetabolismus in unterschiedlichen Geweben, zu unterschiedlichen Entwicklungsstufen und unter sich {\"a}ndernden Umweltbedingungen erm{\"o}glichen. Ein detailliertes Wissen {\"u}ber die Funktion extrazellul{\"a}rer Invertasen k{\"o}nnte eingesetzt werden, um Wachstum, Entwicklung oder Pathogenresisitenz von Nutzpflanzen gezielt zu ver{\"a}ndern. In der vorliegenden Studie wurden die Regulationsmuster und die Funktion dreier extrazellul{\"a}rer Invertasen aus Tomate, Lin5, Lin6 und Lin7 untersucht. Durch umfangreiche Promotorstudien konnte eine gewebe- und entwicklungsspezifische Expression dieser Isoenzyme und entsprechende Regulationsmuster offengelegt werden. Lin5 zeigt eine entwicklungsabh{\"a}ngige Expression in Fr{\"u}chten. Lin6 wird in fr{\"u}hen Entwicklungsstadien, beginnend mit der Samenkeimung, exprimiert; in ausgewachsenen Pflanzen ist eine Lin6 Expression nur in Pollen oder nach Verwundungsinduktion nachweisbar. Lin7 wird ausschließlich in Tapetum-Gewebe und Pollen exprimiert. Die hormonelle Regulation der Isogene wurde im Detail untersucht, hierbei konnten bekannte Ph{\"a}notypen, welche durch Gibberellins{\"a}ure und Jasmonate bedingt werden, mit Invertasefunktionen in Korrelation gebracht werden. Dar{\"u}ber hinaus konnte in einem funktionalen Ansatz gezeigt werden, dass Lin7 eine wichtige Rolle in der Pollenkeimung zukommt. Die vorliegende Arbeit stellt die umfassendste Untersuchung extrazellul{\"a}rer Invertasen w{\"a}hrend der Bl{\"u}tenentwicklung dar, an der drei Isoenzyme aus Tomate beteiligt sind. Dadurch, dass den einzelnen Invertasen Lin5, Lin6 und Lin7 individuelle Funktionen zugewiesen werden konnten, er{\"o}ffnen sich neue Erkenntnisse {\"u}ber die Kohlenhydratversorgung w{\"a}hrend der Bl{\"u}ten- und Fruchtentwicklung. F{\"u}r die untersuchten gewebespezifischen Promotoren er{\"o}ffnen sich zudem Anwendungsm{\"o}glichkeiten in der Biotechnologie, was insbesondere f{\"u}r den pollenspezifischen Lin7 Promotor zutrifft. Es konnte gezeigt werden, dass der Lin6 Promotor das Ziel von hormon-, zucker- und verwundungsvermittelten Signalwegen ist. Dar{\"u}ber hinaus konnte nachgewiesen werden, dass Elemente des circadianen Oszillators von A. thaliana mit dem Lin6 Promotor funktionell interagieren und die Lin6 Expression einem diurnalen Rhythmus unterliegt. Dieses komplexe Regulationsmuster spiegelt sich in vielen cis-aktiven Elementen wider, die im Lin6 Promotor vorgefunden wurden. Durch dieses Merkmal wird die These gest{\"u}tzt, dass verschiedene Stimuli {\"u}ber die extrazellul{\"a}re Invertase integriert werden und so eine koordinierte Zellantwort auf sich {\"a}ndernde interne und externe Bedingungen erm{\"o}glicht wird. Nachdem Zuckermolek{\"u}le ihrerseits die Expression von Lin6 induzieren, wird dadurch eine Amplifikation von Signalen {\"u}ber eine positive R{\"u}ckkopplungsschleife erm{\"o}glicht. Die Vielzahl an cis-aktiven Elementen und deren Anordnung im Lin6 Promotor stellen ein ideales Modellsystem dar, um Fragen in Bezug auf Signalinteraktion und -integration zu untersuchen. In einer umfangreichen Studie wurde der Lin6 Promotor erfolgreich als induzierbares Expressionssystem eingesetzt. Hierbei wurde ein Invertaseinhibitor unter der Kontrolle des cytokinininduzierbaren Lin6 Promotors in transgenen Tabakpflanzen exprimiert. Mit diesem Ansatz ist es gelungen einen kausalen Zusammenhang zwischen dem Hormon Cytokinin und extrazellul{\"a}ren Invertasen in der Seneszenzverz{\"o}gerung herzustellen. Diese Studie zeigt, dass induzierbare Expressionssysteme essentiell sind, um spezifische Fragestellungen auf molekularer Ebene kl{\"a}ren zu k{\"o}nnen. Bei der Klonierung obig genannter Promotorsequenzen haben sich zudem zwei interessante strukturelle Besonderheiten ergeben. Zum einen sind die Gene von Lin5 und Lin7 in einem Tandem auf dem Genom angeordnet, zum anderen konnte eine Transposoninsertion im Intron I des Lin5 Gens gezeigt werden. Mit einem Primerpaar, das aus der Transposaseregion dieses Transposons abgeleitet wurde, konnten entsprechende Sequenzen von mehreren Solanaceae Spezies gewonnen werden.}, subject = {Tomate}, language = {en} } @phdthesis{Stuhlfelder2004, author = {Stuhlfelder, Christiane}, title = {Reinigung, Klonierung und heterologe Expression der Methyljasmonat-Esterase aus Lycopersicon esculentum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8433}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Aus Lycopersicon esculentum Zellsuspensionskulturen konnte ein bisher unbekanntes Enzym isoliert und beschrieben werden, das die Hydrolyse von Methyljasmonat (MeJA) zu Jasmons{\"a}ure (JA) katalysiert. Das Enzym wurde als Methyljasmonat-Esterase (MeJA-Esterase) bezeichnet. Mittels Methyl-[2-14C]JA und [Methyl-3H]MeJA wurden qualitative und quantitative Enzymtestsysteme etabliert, welche die Reinigung und Charakterisierung des Enzyms erlaubten. Methyljasmonat-Esterase Aktivit{\"a}t konnte in 18 taxonomisch unterschiedlichen Zellsuspensionskulturen h{\"o}herer Pflanzen sowie in differenziertem Gewebe (Bl{\"u}te, Wurzel, Stengel und Blatt) von Lycopersicon esculentum cv. Moneymaker nachgewiesen werden. In einem 6-stufigen Reinigungsverfahren wurde das native Enzym mit einer Ausbeute von 2.2 \% bis zur Homogenit{\"a}t 767-fach angereichert. Die native MeJA-Esterase kommt nativ als monomeres 26 kDa großes Protein vor. Unter denaturierenden Bedingungen konnte ein Molekulargewicht von 28 kDa bestimmt werden. Eine Analyse mittels ESI-TOF-Massenspektrometrie ergab ein Molekulargewicht von 28547 Da. Die native MeJA-Esterase hatte ein basisches pH-Optimum von 9.0. Optimale katalytische Aktivit{\"a}t zeigte die MeJA-Esterase bei einer Reaktionstemperatur von 40 \&\#61616;C. Der isoelektrische Punkt lag bei pH 4.7. Eine vollst{\"a}ndige und irreversible Hemmung der MeJA-Esterase konnte durch 5 mM Phenylmethylsulfonylfluorid (PMSF), einem Serinprotease-Inhibitor erzielt werden. Dieses Ergebnis lieferte einen Hinweis darauf, dass die MeJA-Esterase eine katalytische Triade mit einem reaktiven Serin-Rest besitzt. N-Methylmaleimid, Iodacetamid, Bestatin, Pepstatin und Leupeptin konnten die MeJA-Esterase nicht inhibieren. Nach der Reinigung der MeJA-Esterase wurde das Protein partiell mit der Endoproteinase LysC verdaut. Mittels Sequenzierung der Spaltpeptide und N-terminaler Sequenzierung der MeJA-Esterase konnte von vier Peptiden die Sequenz bestimmt werden. Ein Datenbankvergleich (SwissProt und EMBL) dieser Peptide mit bekannten Sequenzen zeigte eine hohe Homologie (bis zu 80 \%) zu verschiedenen Esterasen und \&\#945;-Hydroxynitrillyasen. Die Peptide konnten somit eindeutig als Bestandteile einer Esterase identifiziert werden. Zur Identifizierung des MeJA-Esterase Gens wurden aus den Peptidsequenzen degenerierte Primer abgeleitet und zur weiteren Klonierung verwendet. {\"U}ber eine Reverse Transkription mit anschließender PCR wurde ein internes cDNA-Fragment (513 bp) amplifiziert. Mittels RACE (Rapid Amplification of cDNA Ends) konnten das 5´-und 3´-Ende der MeJA-Esterase cDNA ermittelt werden. Die Nucleotidsequenz umfasste einen offenen Leserahmen von 786 bp. Die davon abgeleitete Aminos{\"a}uresequenz codierte ein offenes Leseraster f{\"u}r ein Protein von 262 Aminos{\"a}uren. Datenbankvergleiche der vollst{\"a}ndigen Aminos{\"a}uresequenz zeigten Homologien von 33 - 47 \% zu Esterasen und \&\#945;-Hydroxynitrillyasen. Die Aminos{\"a}uren der katalytischen Triade, die in den homologen Proteinen hochkonserviert waren, konnten bei der MeJA-Esterase als Serin-83, Asparagins{\"a}ure-211 und Histidin-240 ermittelt werden. Diese drei Aminos{\"a}uren bilden vermutlich das katalytische Zentrum der MeJA-Esterase. Dar{\"u}ber hinaus konnte eine hochkonservierte Signatur, die allen Lipasen gemeinsam ist in der Aminos{\"a}uresequenz der MeJA-Esterase identifziert werden. Diese Ergebnisse erlauben eine Einordnung der MeJA-Esterase in die Superfamilie der „alpha/beta-Fold"-Hydrolasen. Untersuchungen der Prim{\"a}rstruktur der MeJA-Esterase legten den Schluss nahe, dass es sich um ein cytosolisches Enzym handelt. Eine Southern-Blot Analyse mit genomischer DNA aus L. esculentum wurde zur Absch{\"a}tzung der Kopienzahl der zum Protein der MeJA-Esterase korresporendierenden Gene durchgef{\"u}hrt. Dabei wurden zwei bis sieben DNA-Abschnitte ermittelt, die mit der Volll{\"a}nge-Sonde der MeJA-Esterase hybridisierten. Dieses Ergebnis l{\"a}sst vermuten, dass die MeJA-Esterase zu einer Genfamilie geh{\"o}rt. Unklar bleibt jedoch, ob es sich um mehrere homologe Gene handelt, oder ob eine Hybridisierung der Volll{\"a}nge-Sonde mit Pseudogenen erfolgte. Die heterologe Expression der MeJA-Esterase cDNA wurde erfolgreich durchgef{\"u}hrt. Hierdurch wurde der Beweis erbracht werden, dass die klonierte cDNA tats{\"a}chlich f{\"u}r das Gen der MeJA-Esterase codierte. Nach Klonierung der cDNA in den pQE70-Expressionsvektor und Transformation in kompetente E. coli (M15) konnte im Proteinrohextrakt eine spezifische Enzymaktivit{\"a}t von 1.64 pkat/mg detektiert werden. In einem 4-stufigen Reinigungsverfahren wurde das heterolog exprimierte Enzym mit einer Ausbeute von 0.8 \% bis zur Homogenit{\"a}t 283-fach angereichert. Untersuchungen zur Substratspezifit{\"a}t zeigten, dass native und heterolog exprimierte MeJA-Esterase Methyljasmonat zu Jasmons{\"a}ure hydrolysierten. In beiden F{\"a}llen handelte es sich jedoch um kein hochspezifisches Enzym. F{\"u}r die native MeJA-Esterase konnte ein KM-Wert von 14.7 ± 0.8 µM und f{\"u}r die heterolog exprimierte MeJA-Esterase ein KM-Wert von 24.3 ± 2.3 µM ermittelt werden.}, subject = {Tomate}, language = {de} }