@article{ErhardtAkulaSchumacheretal.2012, author = {Erhardt, A. and Akula, N. and Schumacher, J. and Czamara, D. and Karbalai, N. and M{\"u}ller-Myhsok, B. and Mors, O. and Borglum, A. and Kristensen, A. S. and Woldbye, D. P. D. and Koefoed, P. and Eriksson, E. and Maron, E. and Metspalu, A. and Nurnberger, J. and Philibert, R. A. and Kennedy, J. and Domschke, K. and Reif, A. and Deckert, J. and Otowa, T. and Kawamura, Y. and Kaiya, H. and Okazaki, Y. and Tanii, H. and Tokunaga, K. and Sasaki, T. and Ioannidis, J. P. A. and McMahon, F. J. and Binder, E. B.}, title = {Replication and meta-analysis of TMEM132D gene variants in panic disorder}, series = {Translational Psychiatry}, volume = {2}, journal = {Translational Psychiatry}, number = {e156}, doi = {10.1038/tp.2012.85}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133324}, year = {2012}, abstract = {A recent genome-wide association study in patients with panic disorder (PD) identified a risk haplotype consisting of two single-nucleotide polymorphisms (SNPs) (rs7309727 and rs11060369) located in intron 3 of TMEM132D to be associated with PD in three independent samples. Now we report a subsequent confirmation study using five additional PD case-control samples (n = 1670 cases and n 2266 controls) assembled as part of the Panic Disorder International Consortium (PanIC) study for a total of 2678 cases and 3262 controls in the analysis. In the new independent samples of European ancestry (EA), the association of rs7309727 and the risk haplotype rs7309727-rs11060369 was, indeed, replicated, with the strongest signal coming from patients with primary PD, that is, patients without major psychiatric comorbidities (n 1038 cases and n 2411 controls). This finding was paralleled by the results of the meta-analysis across all samples, in which the risk haplotype and rs7309727 reached P-levels of P = 1.4e-8 and P = 1.1e-8, respectively, when restricting the samples to individuals of EA with primary PD. In the Japanese sample no associations with PD could be found. The present results support the initial finding that TMEM132D gene contributes to genetic susceptibility for PD in individuals of EA. Our results also indicate that patient ascertainment and genetic background could be important sources of heterogeneity modifying this association signal in different populations.}, language = {en} } @article{FrankeFaraoneAshersonetal.2012, author = {Franke, B. and Faraone, S. V. and Asherson, P. and Buitelaar, J. and Bau, C. H. D. and Ramos-Quiroga, J. A. and Mick, E. and Grevet, E. H. and Johansson, S. and Haavik, J. and Lesch, K.-P. and Cormand, B. and Reif, A.}, title = {The genetics of attention deficit/hyperactivity disorder in adults, a review}, series = {Molecular Psychiatry}, volume = {17}, journal = {Molecular Psychiatry}, doi = {10.1038/mp.2011.138}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124677}, pages = {960-987}, year = {2012}, abstract = {The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5\% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30-40\%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood.}, language = {en} }