@article{KriegelMatevskiSchuldt2021, author = {Kriegel, Peter and Matevski, Dragan and Schuldt, Andreas}, title = {Monoculture and mixture-planting of non-native Douglas fir alters species composition, but promotes the diversity of ground beetles in a temperate forest system}, series = {Biodiversity and Conservation}, volume = {30}, journal = {Biodiversity and Conservation}, number = {5}, issn = {1572-9710}, doi = {10.1007/s10531-021-02155-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-269017}, pages = {1479-1499}, year = {2021}, abstract = {Planting non-native tree species, like Douglas fir in temperate European forest systems, is encouraged to mitigate effects of climate change. However, Douglas fir monocultures often revealed negative effects on forest biota, while effects of mixtures with native tree species on forest ecosystems are less well understood. We investigated effects of three tree species (Douglas fir, Norway spruce, native European beech), on ground beetles in temperate forests of Germany. Beetles were sampled in monocultures of each tree species and broadleaf-conifer mixtures with pitfall traps, and environmental variables were assessed around each trap. We used linear mixed models in a two-step procedure to disentangle effects of environment and tree species identity on ground beetle abundance, species richness, functional diversity and species assemblage structure. Contradictory to our expectations, ground beetle abundance and functional diversity was highest in pure Douglas fir stands, while tree mixtures showed intermediate values between pure coniferous and pure beech stands. The main drivers of these patterns were only partially dependent on tree species identity, which highlights the importance of structural features in forest stands. However, our study revealed distinct shifts in assemblage structure between pure beech and pure Douglas fir stands, which were only partially eased through mixture planting. Our findings suggest that effects of planting non-native trees on associated biodiversity can be actively modified by promoting beneficial forest structures. Nevertheless, integrating non-native tree species, even in mixtures with native trees, will invariably alter assemblage structures of associated biota, which can compromise conservation efforts targeted at typical species composition.}, language = {en} } @article{MuellerMitesserSchaeferetal.2023, author = {M{\"u}ller, J{\"o}rg and Mitesser, Oliver and Schaefer, H. Martin and Seibold, Sebastian and Busse, Annika and Kriegel, Peter and Rabl, Dominik and Gelis, Rudy and Arteaga, Alejandro and Freile, Juan and Leite, Gabriel Augusto and de Melo, Tomaz Nascimento and LeBien, Jack and Campos-Cerqueira, Marconi and Bl{\"u}thgen, Nico and Tremlett, Constance J. and B{\"o}ttger, Dennis and Feldhaar, Heike and Grella, Nina and Falcon{\´i}-L{\´o}pez, Ana and Donoso, David A. and Moriniere, Jerome and Buřivalov{\´a}, Zuzana}, title = {Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41693-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358130}, year = {2023}, abstract = {Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.}, language = {en} } @article{KriegelFritzeThorn2021, author = {Kriegel, Peter and Fritze, Michael-Andreas and Thorn, Simon}, title = {Surface temperature and shrub cover drive ground beetle (Coleoptera: Carabidae) assemblages in short-rotation coppices}, series = {Agricultural and Forest Entomology}, volume = {23}, journal = {Agricultural and Forest Entomology}, number = {4}, doi = {10.1111/afe.12441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239873}, pages = {400 -- 410}, year = {2021}, abstract = {Increasing demand for biomass has led to an on-going intensification of fuel wood plantations with possible negative effects on open land biodiversity. Hence, ecologists increasingly call for measures that reduce those negative effects on associated biodiversity. However, our knowledge about the efficiency of such measures remains scarce. We investigated the effects of gap implementation in short rotation coppices (SRCs) on carabid diversity and assemblage composition over 3 years, with pitfall traps in gaps, edges and interiors. In parallel, we quantified soil surface temperature, shrub- and herb cover. Edges had the highest number of species and abundances per trap, whereas rarefied species richness was significantly lower in short rotation coppice interiors than in other habitat types. Carabid community composition differed significantly between habitat types. The main environmental drivers were temperature for number of species and abundance and shrub cover for rarefied species richness. We found significantly higher rarefied species richness in gaps compared with interiors. Hence, we argue that gap implementation benefits overall diversity in short rotation coppices. Furthermore, the differences in species community composition between habitat types through increased species turnover support carabid diversity in short rotation coppices. These positive effects were largely attributed to microclimate conditions. However, to maintain positive effects, continuous management of herb layer might be necessary.}, language = {en} }