@article{FlorenLinsenmairMueller2022, author = {Floren, Andreas and Linsenmair, Karl Eduard and M{\"u}ller, Tobias}, title = {Diversity and functional relevance of canopy arthropods in Central Europe}, series = {Diversity}, volume = {14}, journal = {Diversity}, number = {8}, issn = {1424-2818}, doi = {10.3390/d14080660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285924}, year = {2022}, abstract = {Although much is known about the ecology and functional importance of canopy arthropods in temperate forests, few studies have tried to assess the overall diversity and investigate the composition and dynamics of tree-specific communities. This has impeded a deeper understanding of the functioning of forests, and of how to maintain system services. Here, we present the first comprehensive data of whole arthropod communities, collected by insecticidal knockdown (fogging) from 1159 trees in 18 study areas in Central Europe during the last 25 years. The data includes 3,253,591 arthropods from 32 taxa (order, suborder, family) collected on 24 tree species from 18 genera. Fogging collects free-living, ectophytic arthropods in approximately the same number as they occur in the trees. To our knowledge, these are the most comprehensive data available today on the taxonomic composition of arboreal fauna. Assigning all arthropods to their feeding guild provided a proxy of their functional importance. The data showed that the canopy communities were regularly structured, with a clear dominance hierarchy comprised of eight 'major taxa' that represented 87\% of all arthropods. Despite significant differences in the proportions of taxa on deciduous and coniferous trees, the composition of the guilds was very similar. The individual tree genera, on the other hand, showed significant differences in guild composition, especially when different study areas and years were compared, whereas tree-specific traits, such as tree height, girth in breast height or leaf cover, explained little of the overall variance. On the ordinal level, guild composition also differed significantly between managed and primary forests, with a simultaneous low within-group variability, indicating that management is a key factor determining the distribution of biodiversity and guild composition.}, language = {en} } @article{SteinCoulibalyBalimaetal.2020, author = {Stein, Katharina and Coulibaly, Drissa and Balima, Larba Hubert and Goetze, Dethardt and Linsenmair, Karl Eduard and Porembski, Stefan and Stenchly, Kathrin and Theodorou, Panagiotis}, title = {Plant-pollinator networks in savannas of Burkina Faso, West Africa}, series = {Diversity}, volume = {13}, journal = {Diversity}, number = {1}, issn = {1424-2818}, doi = {10.3390/d13010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220157}, year = {2020}, abstract = {West African savannas are severely threatened with intensified land use and increasing degradation. Bees are important for terrestrial biodiversity as they provide native plant species with pollination services. However, little information is available regarding their mutualistic interactions with woody plant species. In the first network study from sub-Saharan West Africa, we investigated the effects of land-use intensity and climatic seasonality on plant-bee communities and their interaction networks. In total, we recorded 5686 interactions between 53 flowering woody plant species and 100 bee species. Bee-species richness and the number of interactions were higher in the low compared to medium and high land-use intensity sites. Bee- and plant-species richness and the number of interactions were higher in the dry compared to the rainy season. Plant-bee visitation networks were not strongly affected by land-use intensity; however, climatic seasonality had a strong effect on network architecture. Null-model corrected connectance and nestedness were higher in the dry compared to the rainy season. In addition, network specialization and null-model corrected modularity were lower in the dry compared to the rainy season. Our results suggest that in our study region, seasonal effects on mutualistic network architecture are more pronounced compared to land-use change effects. Nonetheless, the decrease in bee-species richness and the number of plant-bee interactions with an increase in land-use intensity highlights the importance of savanna conservation for maintaining bee diversity and the concomitant provision of ecosystem services.}, language = {en} } @article{FlorenKruegerMuelleretal.2015, author = {Floren, Andreas and Kr{\"u}ger, Dirk and M{\"u}ller, Tobias and Dittrich, Marcus and Rudloff, Renate and Hoppe, Bj{\"o}rn and Linsenmair, Karl Eduard}, title = {Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0143566}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145129}, pages = {e0143566}, year = {2015}, abstract = {Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dun, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical 'region' was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dun, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores.}, language = {en} } @article{FrankSchmittHovestadtetal.2017, author = {Frank, Erik Thomas and Schmitt, Thomas and Hovestadt, Thomas and Mitesser, Oliver and Stiegler, Jonas and Linsenmair, Karl Eduard}, title = {Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis}, series = {Science Advances}, volume = {3}, journal = {Science Advances}, number = {4}, doi = {10.1126/sciadv.1602187}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157933}, pages = {e1602187}, year = {2017}, abstract = {Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis, consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32\% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7\% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals.}, language = {en} } @article{DossoYeoKonateetal.2012, author = {Dosso, Kanvaly and Yeo, Kolo and Konate, Souleymane and Linsenmair, Karl Eduard}, title = {Importance of protected areas for biodiversity conservation in central Cote d'Ivoire: Comparison of termite assemblages between two neighboring areas under differing levels of disturbance}, series = {Journal of Insect Science}, volume = {12}, journal = {Journal of Insect Science}, number = {131}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133218}, year = {2012}, abstract = {To highlight human impact on biodiversity in the Lamto region, termites were studied with regard to their use as bio-indicators of habitat change in the tropics. Using a standardized method, termites were sampled in the three most common habitat types, i.e., in semi-deciduous forest, savanna woodland, and annually burned savanna, all inside Lamto Reserve and its surrounding rural domain. Termite species richness fell from 25 species in the Lamto forest to 13 species in the rural area, involving strong modification in the species composition (species turnover = 59 \%). In contrast, no significant change in diversity was found between the Lamto savannas and the rural ones. In addition, the relative abundance of termites showed a significantly greater decline in the rural domain, even in the species Ancistrotermes cavithorax (Sjostedt) (Isoptera: Termitidae), which is known to be ecologically especially versatile. Overall, the findings of this study suggest further investigation around Lamto Reserve on the impact of human activities on biodiversity, focusing on forest conversion to land uses (e.g. agricultural and silvicultural systems).}, language = {en} } @article{SchmuckKobeltLinsenmair1988, author = {Schmuck, R. and Kobelt, F. and Linsenmair, Karl Eduard}, title = {Adaptations of the reed frog Hyperbolius viridiflavus (Anura, Hyperbolidae) to its arid environment: V. Iridophores and nitrogen metabolism}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78094}, year = {1988}, abstract = {Ofall amphibians living in arid habitats, reed frogs (belonging to the super species Hyperolius viridiflavus) are the most peculiar. Froglets are able to tolerate dry periods of up to 35 days or longer immediately after metamorphosis, in climatically exposed positions. They face similar problems to estivating juveniles, i.e. enduranee of long periods of high temperature and low RH with rather limited energy and water reserves. In addition, they must have had to develop meehanisms to prevent poisoning by nitrogenous wastes that rapidly accumulate during dry periods as a metabolie consequenee of maintaining a non-torpid state. During dry periods, plasma osmolarity of H. v. taeniatus froglets strongly increased, mainly through urea accumulation. Urea accumulation was also observed during metamorphic climax. During postmetamorphic growth, chromatophores develop with the density and morphology typical of the adult pigmentary pattern. The dermal iridophore layer, which is still incomplete at this time, is fully developed within 4-8 days after metamorphosis, irrespective of maintenance conditions. These iridophores mainly contain the purines guanine and hypoxanthine. The ability of these purines to reflect light provides an excellent basis for the role of iridophores in temperature regulation. In individuals experiencing dehydration stress, the initial rate of purine synthesis is doubled in eomparison to specimens continuously maintained under wet season conditions. This increase in synthesis rate leads to a rapid increase in the thiekness of the iridophore layer, thereby effectively reducing radiation absorption. Thus, the danger of overheating is diminished during periods of water shortage when evaporative cooling must be avoided. After the development of an iridophore layer of sufficient thickness for effective radiation reflectance, synthesis of iridophore pigments does not cease. Rather, this pathway is further used during the remaining dry season for solving osmotic problems eaused by accumulation of nitrogenous wastes. During prolonged water deprivation, in spite of reduced metabolic rates, purine pigments are produced at the same rate as in wet season conditions. This leads to a higher relative proportion of nitrogen end products being stored in skin pigments under dry season conditions. At the end of an experimental dry season lasting 35 days, up to 38\% of the accrued nitrogen is stored in the form of osmotically inactive purines in thc skin. Thus the osmotic problems caused by evaporative water loss and urea production are greatly reduced.}, subject = {Biologie}, language = {en} } @article{LinsenmairSchmuck1988, author = {Linsenmair, Karl Eduard and Schmuck, R.}, title = {Adaptations of the reed frog Hyperbolius viridiflavus to its arid environment. III. Aspects of nitrogen metabolism and osmuregulation in the reed frog, H. viridiflavus taeniatus, with special reference to the role of iridophores}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78108}, year = {1988}, abstract = {Reed frogs of the superspecies Hyperolius viridiflavus occur throughout the seasonally very dry and hot African savannas. Despite their small size (300-700 mg), estivating reed frogs do not avoid stressful conditions above ground by burrowing into the soil, but endure the inhospitable climate relatively unprotected, clinging to mostly dry grass sterns. They must have emcient mechanisms to enable them to survive e.g. very high temperatures, low relative hurnidities, and high solar radiation loads. Mechanisms must also have developed to prevent poisoning by the nitrogenous wastes that inevitably result from protein and nucleotide turnover. In contrast to fossorial amphibians, estivating reed frogs do not become torpid. Reduction in metabolism is therefore rather Iimited so that nitrogenous wastes accumulate faster in these frogs than in fossorial amphibians. This severely aggravates the osmotic problems caused by dehydration. During dry periods total plasma osmolarity greatly increases, mainly due to urea accumulation. Of the total urea accumulated over 42 days of experimental water deprivation, 30\% was produced during the first 7 days. In the next 7 days rise in plasma urea content was negligible. This strong initial increase of urea is seen as a byproduct of elevated amino acid catabolism following the onset of dry conditions. Tbe rise in total plasma osmolarity due to urea accumulation, however, is not totally disadvantageous, but enables fast rehydration when water is available for very short periods only. Voiding of urine and feces eeases once evaporative water loss exceeds 10\% of body weight. Tberefore, during continuous water deprivation, nitrogenous end products are not excreted. After 42 days of water deprivation, bladder fluid was substantially depleted, and urea coneentration in the remaining urine (up to 447 mM) was never greater than in plasma fluid. Feces voided at the end of the dry period after water uptake contained only small amounts of nitrogenous end products. DSF (dry season frogs) seemed not to be uricotelic. Instead, up to 35\% of the total nitrogenous wastes produced over 42 days of water deprivation were deposited in an osmotically inert and nontoxic form in iridophore crystals. The increase in skin purine content averaged 150 µg/mg dry weight. If urea had been the only nitrogenous waste product during an estivation period of 42 days, lethal limits of total osmolarity (about 700 mOsm) would have been reached 10-14 days earlier. Thus iridophores are not only involved in colour change and in reducing heat load by radiation remission, but are also important in osmoregulation during dry periods. The seIective advantages of deposition of guanine rather than uric acid are discussed.}, subject = {Biologie}, language = {en} } @article{Linsenmair1972, author = {Linsenmair, Karl Eduard}, title = {Anemomenotactic orientation in beetles and scorpions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78118}, year = {1972}, abstract = {Scorpions, living in North African semideserts are - in spite of disrupting experimental interferences - able to maintain a certain direction in their natural environment in the dark on a plane surface. Under comparable laboratory conditions, excluding the possibility of light or gravity orientation, they can orient themselves if a directed air current passes over the "arena." In most cases the scorpions do not run necessarily with or against the wind, but rather maintain constant angles to the air current for anywhere from minutes to many hours. They are running anemomenotactically (ref. 1). Under identical conditions many species of beetles also orient themselves to air currents (refs. 2 to 4). The main problems to be solved in the study of anemomenotactic orientation are: (1) Which physical qualities of the air current have an influence on the anemomenotaxis? (2) With which sense organs do beetles and scorpions perceive wind directions? (3) Which physiological mechanism is the basis of anemomenotactic orientation? (4) What is the biological significance of anemomenotaxis in beetles and scorpions? With respect to these problems, more study has been done on beetles than on scorpions. Therefore, due to lack of space, I shall discuss mainly some of the results obtained in experiments with dung beetles (Geotrupes silvaticus, G. ,Stercorarius, G. armifrons, G. niger, Scarabaeus variolosus) and tenebrionid beetles (Tenebrio molitor, Pimelia grossa, P. tenuicomis, Scaurus dubius).}, subject = {Biologie}, language = {en} } @article{Linsenmair1986, author = {Linsenmair, Karl Eduard}, title = {Adaptations of the reed frog Hyperbolius viridiflavus to its arid environment: II. Some aspects of the water economy of H. viridiflavus nitidulus under wet and dry ...}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78395}, year = {1986}, abstract = {Adaptations to aridity ofthe reedfrog Hyperolius viridiflavus nitidulus, living in different parts of the seasonally very dry and hot West African savanna, are investigated ...}, subject = {Zoologie}, language = {en} } @article{HsiehLinsenmair2012, author = {Hsieh, Yu-Lung and Linsenmair, Karl Eduard}, title = {Seasonal dynamics of arboreal spider diversity in a temperate forest}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75158}, year = {2012}, abstract = {Measuring and estimating biodiversity patterns is a fundamental task of the scientist working to support conservation and informmanagement decisions.Most biodiversity studies in temperate regions were often carried out over a very short period of time (e.g., a single season) and it is often—at least tacitly—assumed that these short-termfindings are representative of long-termgeneral patterns.However, should the studied biodiversity pattern in fact contain significant temporal dynamics, perhaps leading to contradictory conclusions. Here, we studied the seasonal diversity dynamics of arboreal spider communities dwelling in 216 European beeches (Fagus sylvatica L.) to assess the spider community composition in the following seasons: two cold seasons (I:November 2005-January 2006; II: February-April) and two warm seasons (III: May-July; IV: August-October). We show that the usually measured diversity of the warmseason community (IV: 58 estimated species) alone did not deliver a reliable image of the overall diversity present in these trees, and therefore, we recommend it should not be used for sampling protocols aimed at providing a full picture of a forest's biodiversity in the temperate zones. In particular, when the additional samplings of other seasons (I, II, III) were included, the estimated species richness nearly doubled (108). Community I possessed the lowest diversity and evenness due to the harsh winter conditions: this community was comprised of one dominant species together with several species low in abundance. Similarity was lowest (38.6\%) between seasonal communities I and III, indicating a significant species turnover due to recolonization, so that community III had the highest diversity. Finally, using nonparametric estimators, we found that further sampling in late winter (February-April) is most needed to complete our inventory. Our study clearly demonstrates that seasonal dynamics of communities should be taken into account when studying biodiversity patterns of spiders, and probably forest arthropods in general.}, subject = {Biologie}, language = {en} }