@article{WernerStrohmeierRotheetal.2022, author = {Werner, Lennart and Strohmeier, Michael and Rothe, Julian and Montenegro, Sergio}, title = {Thrust vector observation for force feedback-controlled UAVs}, series = {Drones}, volume = {6}, journal = {Drones}, number = {2}, issn = {2504-446X}, doi = {10.3390/drones6020049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262153}, year = {2022}, abstract = {This paper presents a novel approach to Thrust Vector Control (TVC) for small Unmanned Aerial Vehicles (UAVs). The difficulties associated with conventional feed-forward TVC are outlined, and a practical solution to conquer these challenges is derived. The solution relies on observing boom deformations that are created by different thrust vector directions and high-velocity air inflow. The paper describes the required measurement electronics as well as the implementation of a dedicated testbed that allows the evaluation of mid-flight force measurements. Wind-tunnel tests show that the presented method for active thrust vector determination is able to quantify the disturbances due to the incoming air flow.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{GrzesikBaumannWalteretal.2021, author = {Grzesik, Benjamin and Baumann, Tom and Walter, Thomas and Flederer, Frank and Sittner, Felix and Dilger, Erik and Gl{\"a}sner, Simon and Kirchler, Jan-Luca and Tedsen, Marvyn and Montenegro, Sergio and Stoll, Enrico}, title = {InnoCube — a wireless satellite platform to demonstrate innovative technologies}, series = {Aerospace}, volume = {8}, journal = {Aerospace}, number = {5}, issn = {2226-4310}, doi = {10.3390/aerospace8050127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239564}, year = {2021}, abstract = {A new innovative satellite mission, the Innovative CubeSat for Education (InnoCube), is addressed. The goal of the mission is to demonstrate "the wireless satellite", which replaces the data harness by robust, high-speed, real-time, very short-range radio communications using the SKITH (SKIpTheHarness) technology. This will make InnoCube the first wireless satellite in history. Another technology demonstration is an experimental energy-storing satellite structure that was developed in the previous Wall\#E project and might replace conventional battery technology in the future. As a further payload, the hardware for the concept of a software-based solution for receiving signals from Global Navigation Satellite Systems (GNSS) will be developed to enable precise position determination of the CubeSat. Aside from technical goals this work aims to be of use in the teaching of engineering skills and practical sustainable education of students, important technical and scientific publications, and the increase of university skills. This article gives an overview of the overall design of the InnoCube.}, language = {en} } @article{WalterDegenPfeifferetal.2021, author = {Walter, Thomas and Degen, Jacqueline and Pfeiffer, Keram and St{\"o}ckl, Anna and Montenegro, Sergio and Degen, Tobias}, title = {A new innovative real-time tracking method for flying insects applicable under natural conditions}, series = {BMC Zoology}, volume = {6}, journal = {BMC Zoology}, doi = {10.1186/s40850-021-00097-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265716}, year = {2021}, abstract = {Background Sixty percent of all species are insects, yet despite global efforts to monitor animal movement patterns, insects are continuously underrepresented. This striking difference between species richness and the number of species monitored is not due to a lack of interest but rather to the lack of technical solutions. Often the accuracy and speed of established tracking methods is not high enough to record behavior and react to it experimentally in real-time, which applies in particular to small flying animals. Results Our new method of real-time tracking relates to frequencies of solar radiation which are almost completely absorbed by traveling through the atmosphere. For tracking, photoluminescent tags with a peak emission (1400 nm), which lays in such a region of strong absorption through the atmosphere, were attached to the animals. The photoluminescent properties of passivated lead sulphide quantum dots were responsible for the emission of light by the tags and provide a superb signal-to noise ratio. We developed prototype markers with a weight of 12.5 mg and a diameter of 5 mm. Furthermore, we developed a short wave infrared detection system which can record and determine the position of an animal in a heterogeneous environment with a delay smaller than 10 ms. With this method we were able to track tagged bumblebees as well as hawk moths in a flight arena that was placed outside on a natural meadow. Conclusion Our new method eliminates the necessity of a constant or predictable environment for many experimental setups. Furthermore, we postulate that the developed matrix-detector mounted to a multicopter will enable tracking of small flying insects, over medium range distances (>1000m) in the near future because: a) the matrix-detector equipped with an 70 mm interchangeable lens weighs less than 380 g, b) it evaluates the position of an animal in real-time and c) it can directly control and communicate with electronic devices.}, language = {en} } @article{KaiserLeschRotheetal.2020, author = {Kaiser, Dennis and Lesch, Veronika and Rothe, Julian and Strohmeier, Michael and Spieß, Florian and Krupitzer, Christian and Montenegro, Sergio and Kounev, Samuel}, title = {Towards Self-Aware Multirotor Formations}, series = {Computers}, volume = {9}, journal = {Computers}, number = {1}, issn = {2073-431X}, doi = {10.3390/computers9010007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200572}, pages = {7}, year = {2020}, abstract = {In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios.}, language = {en} } @article{StrohmeierMontenegro2017, author = {Strohmeier, Michael and Montenegro, Sergio}, title = {Coupled GPS/MEMS IMU Attitude Determination of Small UAVs with COTS}, series = {Electronics}, volume = {6}, journal = {Electronics}, number = {1}, doi = {10.3390/electronics6010015}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171179}, pages = {15}, year = {2017}, abstract = {This paper proposes an attitude determination system for small Unmanned Aerial Vehicles (UAV) with a weight limit of 5 kg and a small footprint of 0.5m x 0.5 m. The system is realized by coupling single-frequency Global Positioning System (GPS) code and carrier-phase measurements with the data acquired from a Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU) using consumer-grade Components-Off-The-Shelf (COTS) only. The sensor fusion is accomplished using two Extended Kalman Filters (EKF) that are coupled by exchanging information about the currently estimated baseline. With a baseline of 48 cm, the static heading accuracy of the proposed system is comparable to the one of a commercial single-frequency GPS heading system with an accuracy of approximately 0.25°/m. Flight testing shows that the proposed system is able to obtain a reliable and stable GPS heading estimation without an aiding magnetometer.}, language = {en} } @article{StrohmeierWalterRotheetal.2018, author = {Strohmeier, Michael and Walter, Thomas and Rothe, Julian and Montenegro, Sergio}, title = {Ultra-wideband based pose estimation for small unmanned aerial vehicles}, series = {IEEE Access}, volume = {6}, journal = {IEEE Access}, doi = {10.1109/ACCESS.2018.2873571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177503}, pages = {57526-57535}, year = {2018}, abstract = {This paper proposes a 3-D local pose estimation system for a small Unmanned Aerial Vehicle (UAV) with a weight limit of 200 g and a very small footprint of 10 cm×10cm. The system is realized by fusing 3-D position estimations from an Ultra-Wide Band (UWB) transceiver network with Inertial Measurement Unit (IMU) sensor data and data from a barometric pressure sensor. The 3-D position from the UWB network is estimated using Multi-Dimensional Scaling (MDS) and range measurements between the transceivers. The range measurements are obtained using Double-Sided Two-Way Ranging (DS-TWR), thus eliminating the need for an additional clock synchronization mechanism. The sensor fusion is accomplished using a loosely coupled Extended Kalman Filter (EKF) architecture. Extensive evaluation of the proposed system shows that a position accuracy with a Root-Mean-Square Error (RMSE) of 0.20cm can be obtained. The orientation angle can be estimated with an RMSE of 1.93°.}, language = {en} } @article{MontenegroDannemann2011, author = {Montenegro, Sergio and Dannemann, Frank}, title = {Experiences and Best Practice Requirements Engineering for Small Satellites}, series = {Computing Science and Technology International Journal}, volume = {1}, journal = {Computing Science and Technology International Journal}, number = {2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153307}, year = {2011}, abstract = {The design and implementation of a satellite mission is divided into several different phases. Parallel to these phases an evolution of requirements will take place. Because so many people in different locations and from different background have to work in different subsystems concurrently the ideas and concepts of different subsystems and different locations will diverge. We have to bring them together again. To do this we introduce synchronization points. We bring representatives from all subsystems and all location in a Concurrent Engineering Facility (CEF) room together. Between CEF sessions the different subsystems will diverge again, but each time the diversion will be smaller. Our subjective experience from test projects says this CEF sessions are most effective in the first phases of the development, from Requirements engineering until first coarse design. After Design and the concepts are fix, the developers are going to implementation and the concept divergences will be much smaller, therefore the CEF sessions are not a very big help any more.}, language = {en} } @article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Decentralized control for scalable quadcopter formations}, series = {International Journal of Aerospace Engineering}, volume = {2016}, journal = {International Journal of Aerospace Engineering}, doi = {10.1155/2016/9108983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146704}, pages = {9108983}, year = {2016}, abstract = {An innovative framework has been developed for teamwork of two quadcopter formations, each having its specified formation geometry, assigned task, and matching control scheme. Position control for quadcopters in one of the formations has been implemented through a Linear Quadratic Regulator Proportional Integral (LQR PI) control scheme based on explicit model following scheme. Quadcopters in the other formation are controlled through LQR PI servomechanism control scheme. These two control schemes are compared in terms of their performance and control effort. Both formations are commanded by respective ground stations through virtual leaders. Quadcopters in formations are able to track desired trajectories as well as hovering at desired points for selected time duration. In case of communication loss between ground station and any of the quadcopters, the neighboring quadcopter provides the command data, received from the ground station, to the affected unit. Proposed control schemes have been validated through extensive simulations using MATLAB®/Simulink® that provided favorable results.}, language = {en} } @article{AliMontenegro2016, author = {Ali, Qasim and Montenegro, Sergio}, title = {Explicit Model Following Distributed Control Scheme for Formation Flying of Mini UAVs}, series = {IEEE Access}, volume = {4}, journal = {IEEE Access}, number = {397-406}, doi = {10.1109/ACCESS.2016.2517203}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146061}, year = {2016}, abstract = {A centralized heterogeneous formation flight position control scheme has been formulated using an explicit model following design, based on a Linear Quadratic Regulator Proportional Integral (LQR PI) controller. The leader quadcopter is a stable reference model with desired dynamics whose output is perfectly tracked by the two wingmen quadcopters. The leader itself is controlled through the pole placement control method with desired stability characteristics, while the two followers are controlled through a robust and adaptive LQR PI control method. Selected 3-D formation geometry and static stability are maintained under a number of possible perturbations. With this control scheme, formation geometry may also be switched to any arbitrary shape during flight, provided a suitable collision avoidance mechanism is incorporated. In case of communication loss between the leader and any of the followers, the other follower provides the data, received from the leader, to the affected follower. The stability of the closed-loop system has been analyzed using singular values. The proposed approach for the tightly coupled formation flight of mini unmanned aerial vehicles has been validated with the help of extensive simulations using MATLAB/Simulink, which provided promising results.}, language = {en} }