@article{WackExnerWegeneretal.2020, author = {Wack, Linda J. and Exner, Florian and Wegener, Sonja and Sauer, Otto A.}, title = {The impact of isocentric shifts on delivery accuracy during the irradiation of small cerebral targets — Quantification and possible corrections}, series = {Journal of Applied Clinical Medical Physics}, volume = {21}, journal = {Journal of Applied Clinical Medical Physics}, number = {5}, doi = {10.1002/acm2.12854}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218146}, pages = {56-64}, year = {2020}, abstract = {Purpose To assess the impact of isocenter shifts due to linac gantry and table rotation during cranial stereotactic radiosurgery on D\(_{98}\), target volume coverage (TVC), conformity (CI), and gradient index (GI). Methods Winston-Lutz (WL) checks were performed on two Elekta Synergy linacs. A stereotactic quality assurance (QA) plan was applied to the ArcCHECK phantom to assess the impact of isocenter shift corrections on Gamma pass rates. These corrections included gantry sag, distance of collimator and couch axes to the gantry axis, and distance between cone-beam computed tomography (CBCT) isocenter and treatment beam (MV) isocenter. We applied the shifts via script to the treatment plan in Pinnacle 16.2. In a planning study, isocenter and mechanical rotation axis shifts of 0.25 to 2 mm were applied to stereotactic plans of spherical planning target volumes (PTVs) of various volumes. The shifts determined via WL measurements were applied to 16 patient plans with PTV sizes between 0.22 and 10.4 cm3. Results ArcCHECK measurements of a stereotactic treatment showed significant increases in Gamma pass rate for all three measurements (up to 3.8 percentage points) after correction of measured isocenter deviations. For spherical targets of 1 cm3, CI was most severely affected by increasing the distance of the CBCT isocenter (1.22 to 1.62). Gradient index increased with an isocenter-collimator axis distance of 1.5 mm (3.84 vs 4.62). D98 (normalized to reference) dropped to 0.85 (CBCT), 0.92 (table axis), 0.95 (collimator axis), and 0.98 (gantry sag), with similar but smaller changes for larger targets. Applying measured shifts to patient plans lead to relevant drops in D\(_{98}\) and TVC (7\%) for targets below 2 cm\(^3\) treated on linac 1. Conclusion Mechanical deviations during gantry, collimator, and table rotation may adversely affect the treatment of small stereotactic lesions. Adjustments of beam isocenters in the treatment planning system (TPS) can be used to both quantify their impact and for prospective correction of treatment plans.}, language = {en} } @article{WegenerHerzogSauer2020, author = {Wegener, Sonja and Herzog, Barbara and Sauer, Otto A.}, title = {Detector response in the buildup region of small MV fields}, series = {Medical Physics}, volume = {47}, journal = {Medical Physics}, number = {3}, doi = {10.1002/mp.13973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214228}, pages = {1327-1339}, year = {2020}, abstract = {Purpose: The model used to calculate dose distributions in a radiotherapy treatment plan relies on the data entered during beam commissioning. The quality of these data heavily depends on the detector choice made, especially in small fields and in the buildup region. Therefore, it is necessary to identify suitable detectors for measurements in the buildup region of small fields. To aid the understanding of a detector's limitations, several factors that influence the detector signal are to be analyzed, for example, the volume effect due to the detector size, the response to electron contamination, the signal dependence on the polarity used, and the effective point of measurement chosen. Methods: We tested the suitability of different small field detectors for measurements of depth dose curves with a special focus on the surface-near area of dose buildup for fields sized between 10 × 10 and 0.6 × 0.6 cm\(^{2}\). Depth dose curves were measured with 14 different detectors including plane-parallel chambers, thimble chambers of different types and sizes, shielded and unshielded diodes as well as a diamond detector. Those curves were compared with depth dose curves acquired on Gafchromic film. Additionally, the magnitude of geometric volume corrections was estimated from film profiles in different depths. Furthermore, a lead foil was inserted into the beam to reduce contaminating electrons and to study the resulting changes of the detector response. The role of the effective point of measurement was investigated by quantifying the changes occurring when shifting depth dose curves. Last, measurements for the small ionization chambers taken at opposing biasing voltages were compared to study polarity effects. Results: Depth-dependent correction factors for relative depth dose curves with different detectors were derived. Film, the Farmer chamber FC23, a 0.13 cm\(^{3}\) scanning chamber CC13 and a plane-parallel chamber PPC05 agree very well in fields sized 4 × 4 and 10 × 10 cm\(^{2}\). For most detectors and in smaller fields, depth dose curves differ from the film. In general, shielded diodes require larger corrections than unshielded diodes. Neither the geometric volume effect nor the electron contamination can account for the detector differences. The biggest uncertainty arises from the positioning of a detector with respect to the water surface and from the choice of the detector's effective point of measurement. Depth dose curves acquired with small ionization chambers differ by over 15\% in the buildup region depending on sign of the biasing voltage used. Conclusions: A scanning chamber or a PPC40 chamber is suitable for fields larger than 4 × 4 cm\(^{2}\). Below that field size, the microDiamond or small ionization chambers perform best requiring the smallest corrections at depth as well as in the buildup region. Diode response changes considerably between the different types of detectors. The position of the effective point of measurement has a huge effect on the resulting curves, therefore detector specific rather than general shifts of half the inner radius of cylindrical ionization chambers for the effective point of measurement should be used. For small ionization chambers, averaging between both polarities is necessary for data obtained near the surface.}, language = {en} }