@article{PoppSchmittBoehrerLangeretal.2021, author = {Popp, Sandy and Schmitt-B{\"o}hrer, Angelika and Langer, Simon and Hofmann, Ulrich and Hommers, Leif and Schuh, Kai and Frantz, Stefan and Lesch, Klaus-Peter and Frey, Anna}, title = {5-HTT Deficiency in Male Mice Affects Healing and Behavior after Myocardial Infarction}, series = {Journal of Clinical Medicine}, volume = {10}, journal = {Journal of Clinical Medicine}, number = {14}, issn = {2077-0383}, doi = {10.3390/jcm10143104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242739}, year = {2021}, abstract = {Anxiety disorders and depression are common comorbidities in cardiac patients. Mice lacking the serotonin transporter (5-HTT) exhibit increased anxiety-like behavior. However, the role of 5-HTT deficiency on cardiac aging, and on healing and remodeling processes after myocardial infarction (MI), remains unclear. Cardiological evaluation of experimentally na{\"i}ve male mice revealed a mild cardiac dysfunction in ≥4-month-old 5-HTT knockout (-/-) animals. Following induction of chronic cardiac dysfunction (CCD) by MI vs. sham operation 5-HTT-/- mice with infarct sizes >30\% experienced 100\% mortality, while 50\% of 5-HTT+/- and 37\% of 5-HTT+/+ animals with large MI survived the 8-week observation period. Surviving (sham and MI < 30\%) 5-HTT-/- mutants displayed reduced exploratory activity and increased anxiety-like behavior in different approach-avoidance tasks. However, CCD failed to provoke a depressive-like behavioral response in either 5-Htt genotype. Mechanistic analyses were performed on mice 3 days post-MI. Electrocardiography, histology and FACS of inflammatory cells revealed no abnormalities. However, gene expression of inflammation-related cytokines (TGF-β, TNF-α, IL-6) and MMP-2, a protein involved in the breakdown of extracellular matrix, was significantly increased in 5-HTT-/- mice after MI. This study shows that 5-HTT deficiency leads to age-dependent cardiac dysfunction and disrupted early healing after MI probably due to alterations of inflammatory processes in mice.}, language = {en} } @article{BloemerPachelHofmannetal.2013, author = {Bl{\"o}mer, Nadja and Pachel, Christina and Hofmann, Urlich and Nordbeck, Peter and Bauer, Wolfgang and Mathes, Denise and Frey, Anna and Bayer, Barbara and Vogel, Benjamin and Ertl, Georg}, title = {5-Lipoxygenase facilitates healing after myocardial infarction}, series = {Basic Research in Cardiology}, volume = {108}, journal = {Basic Research in Cardiology}, number = {4}, doi = {10.1007/s00395-013-0367-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132602}, year = {2013}, abstract = {Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX\(^{-/-}\) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX\(^{-/-}\) bone marrow in 5-LOX\(^{-/-}\) animals), indicating that an altered function of 5-LOX\(^{-/-}\) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX\(^{-/-}\) mice in vivo after MI. This might be due to an impaired migration of 5-LOX\(^{-/-}\) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.}, language = {en} }