@article{BroschKorsaTabanetal.2022, author = {Brosch, Philippa K. and Korsa, Tessa and Taban, Danush and Eiring, Patrick and Hildebrand, Sascha and Neubauer, Julia and Zimmermann, Heiko and Sauer, Markus and Shirakashi, Ryo and Djuzenova, Cholpon S. and Sisario, Dmitri and Sukhorukov, Vladimir L.}, title = {Glucose and inositol transporters, SLC5A1 and SLC5A3, in glioblastoma cell migration}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {23}, issn = {2072-6694}, doi = {10.3390/cancers14235794}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297498}, year = {2022}, abstract = {(1) Background: The recurrence of glioblastoma multiforme (GBM) is mainly due to invasion of the surrounding brain tissue, where organic solutes, including glucose and inositol, are abundant. Invasive cell migration has been linked to the aberrant expression of transmembrane solute-linked carriers (SLC). Here, we explore the role of glucose (SLC5A1) and inositol transporters (SLC5A3) in GBM cell migration. (2) Methods: Using immunofluorescence microscopy, we visualized the subcellular localization of SLC5A1 and SLC5A3 in two highly motile human GBM cell lines. We also employed wound-healing assays to examine the effect of SLC inhibition on GBM cell migration and examined the chemotactic potential of inositol. (3) Results: While GBM cell migration was significantly increased by extracellular inositol and glucose, it was strongly impaired by SLC transporter inhibition. In the GBM cell monolayers, both SLCs were exclusively detected in the migrating cells at the monolayer edge. In single GBM cells, both transporters were primarily localized at the leading edge of the lamellipodium. Interestingly, in GBM cells migrating via blebbing, SLC5A1 and SLC5A3 were predominantly detected in nascent and mature blebs, respectively. (4) Conclusion: We provide several lines of evidence for the involvement of SLC5A1 and SLC5A3 in GBM cell migration, thereby complementing the migration-associated transportome. Our findings suggest that SLC inhibition is a promising approach to GBM treatment.}, language = {en} } @article{BittnerBobakHofmannetal.2015, author = {Bittner, Stefan and Bobak, Nicole and Hofmann, Majella-Sophie and Schuhmann, Michael K. and Ruck, Tobias and G{\"o}bel, Kerstin and Br{\"u}ck, Wolfgang and Wiendl, Heinz and Meuth, Sven G.}, title = {Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160816880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151454}, pages = {16880 -- 16896}, year = {2015}, abstract = {Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs.}, language = {en} }