@article{RibitschPehamAdeetal.2018, author = {Ribitsch, Iris and Peham, Christian and Ade, Nicole and Duerr, Julia and Handschuh, Stephan and Schramel, Johannes Peter and Vogl, Claus and Walles, Heike and Egerbacher, Monika and Jenner, Florian}, title = {Structure-Function relationships of equine menisci}, series = {PLoS ONE}, volume = {13}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0194052}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225214}, pages = {e0194052, 1-17}, year = {2018}, abstract = {Meniscal pathologies are among the most common injuries of the femorotibial joint in both human and equine patients. Pathological forces and ensuing injuries of the cranial horn of the equine medial meniscus are considered analogous to those observed in the human posterior medial horn. Biomechanical properties of human menisci are site-and depth-specific. However, the influence of equine meniscus topography and composition on its biomechanical properties is yet unknown. A better understanding of equine meniscus composition and biomechanics could advance not only veterinary therapies for meniscus degeneration or injuries, but also further substantiate the horse as suitable translational animal model for (human) meniscus tissue engineering. Therefore, the aim of this study was to investigate the composition and structure of the equine knee meniscus in a site-and age-specific manner and their relationship with potential site-specific biomechanical properties. The meniscus architecture was investigated histologically. Biomechanical testing included evaluation of the shore hardness (SH), stiffness and energy loss of the menisci. The SH was found to be subjected to both age and site-specific changes, with an overall higher SH of the tibial meniscus surface and increase in SH with age. Stiffness and energy loss showed neither site nor age related significant differences. The macroscopic and histologic similarities between equine and human menisci described in this study, support continued research in this field.}, language = {en} } @phdthesis{Schulte2003, author = {Schulte, Valerie}, title = {In vitro and in vivo studies on the activating platelet collagen receptor glycoprotein VI in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-6564}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {The work summarized here focused on the characterization of the murine platelet collagen receptor glycoprotein (GP) VI and was performed to evaluate its potential as an antithrombotic target. The first mAb against (mouse) GPVI, JAQ1, was generated and used to demonstrate that GPVI requires the FcRgamma-chain for its expression and function and that this receptor is the central molecule in collagen-induced platelet activation. Blocking the major collagen binding site on GPVI with JAQ1 revealed the presence of a second activatory epitope within collagen. Additionally, the collagen receptor integrin alpha2beta1 was found to be required for activation via this second pathway but not to be essential for collagen-induced activation of normal platelets. In studies with mice expressing reduced levels of the GPVI-FcRgamma-complex, differential responses to GPVI ligands were observed. Most importantly, the striking difference between platelet responses to collagen and the GPVI specific synthetic collagen related peptide (CRP) confirmed the supportive role of other collagen receptor(s) on platelets. Irrespective of yet undefined additional receptors, studies with mice deficient in GPVI (FcRgamma-chain) or alpha2beta1 showed that GPVI, but not alpha2beta1 is essential for platelet-collagen interaction. Based on these results, the model of platelet attachment to collagen was revised establishing GPVI as the initial activating receptor which upregulates the activity of integrins, thus enabling firm attachment of platelets to the ECM. While the mAb JAQ1 had only limited inhibitory effects on collagen-induced activation in vitro, its in vivo application to mice resulted in completely abolished platelet responses to collagen and the GPVI specific agonists CRP and convulxin. This effect was found to be due to antibody-induced irreversible down-regulation of GPVI on circulating platelets for at least two weeks. Further studies revealed that GPVI depletion occurs independently of the targeted epitope on the receptor and does not require the divalent form of IgG as it was also induced by mAbs (JAQ2, JAQ3) or the respective Fab fragments directed against epitopes distinct from the major collagen binding site. The internalization of GPVI in vivo resulted in a long-term protection of the mice from lethal collagen-dependent thromboembolism whereas it had only moderate effects on the bleeding time, probably because the treatment did not affect other activation pathways. These results establish GPVI as a potential pharmacological target for the prevention of ischemic cardiovascular diseases and may open the way for a completely new generation of antithrombotics.}, subject = {Maus}, language = {en} }