@article{ReinersSobrinoKuenzer2023, author = {Reiners, Philipp and Sobrino, Jos{\´e} and Kuenzer, Claudia}, title = {Satellite-derived land surface temperature dynamics in the context of global change — a review}, series = {Remote Sensing}, volume = {15}, journal = {Remote Sensing}, number = {7}, issn = {2072-4292}, doi = {10.3390/rs15071857}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311120}, year = {2023}, abstract = {Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites.}, language = {en} } @article{WeiBlaschke2018, author = {Wei, Chunzhu and Blaschke, Thomas}, title = {Pixel-wise vs. object-based impervious surface analysis from remote sensing: correlations with land surface temperature and population density}, series = {Urban Science}, volume = {2}, journal = {Urban Science}, number = {1}, issn = {2413-8851}, doi = {10.3390/urbansci2010002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197829}, pages = {2}, year = {2018}, abstract = {Impervious surface areas (ISA) are heavily influenced by urban structure and related structural features. We examined the effects of object-based impervious surface spatial pattern analysis on land surface temperature and population density in Guangzhou, China, in comparison to classic per-pixel analyses. An object-based support vector machine (SVM) and a linear spectral mixture analysis (LSMA) were integrated to estimate ISA fraction using images from the Chinese HJ-1B satellite for 2009 to 2011. The results revealed that the integrated object-based SVM-LSMA algorithm outperformed the traditional pixel-wise LSMA algorithm in classifying ISA fraction. More specifically, the object-based ISA spatial patterns extracted were more suitable than pixel-wise patterns for urban heat island (UHI) studies, in which the UHI areas (landscape surface temperature >37 °C) generally feature high ISA fraction values (ISA fraction >50\%). In addition, the object-based spatial patterns enable us to quantify the relationship of ISA with population density (correlation coefficient >0.2 in general), with global human settlement density (correlation coefficient >0.2), and with night-time light map (correlation coefficient >0.4), and, whereas pixel-wise ISA did not yield significant correlations. These results indicate that object-based spatial patterns have a high potential for UHI detection and urbanization monitoring. Planning measures that aim to reduce the urbanization impacts and UHI intensities can be better supported.}, language = {en} }