@unpublished{HennigPrustyKauferetal.2022, author = {Hennig, Thomas and Prusty, Archana B. and Kaufer, Benedikt and Whisnant, Adam W. and Lodha, Manivel and Enders, Antje and Thomas, Julius and Kasimir, Francesca and Grothey, Arnhild and Herb, Stefanie and J{\"u}rges, Christopher and Meister, Gunter and Erhard, Florian and D{\"o}lken, Lars and Prusty, Bhupesh K.}, title = {Selective inhibition of miRNA 1 processing by a herpesvirus encoded miRNA}, edition = {accepted version}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267862}, year = {2022}, abstract = {Herpesviruses have mastered host cell modulation and immune evasion to augment productive infection, life-long latency and reactivation thereof 1,2. A long appreciated, yet elusively defined relationship exists between the lytic-latent switch and viral non-coding RNAs 3,4. Here, we identify miRNA-mediated inhibition of miRNA processing as a thus far unknown cellular mechanism that human herpesvirus 6A (HHV-6A) exploits to disrupt mitochondrial architecture, evade intrinsic host defense and drive the lytic-latent switch. We demonstrate that virus-encoded miR-aU14 selectively inhibits the processing of multiple miR-30 family members by direct interaction with the respective pri-miRNA hairpin loops. Subsequent loss of miR-30 and activation of the miR-30/p53/Drp1 axis triggers a profound disruption of mitochondrial architecture. This impairs induction of type I interferons and is necessary for both productive infection and virus reactivation. Ectopic expression of miR-aU14 triggered virus reactivation from latency, identifying viral miR-aU14 as a readily drugable master regulator of the herpesvirus lytic-latent switch. Our results show that miRNA-mediated inhibition of miRNA processing represents a generalized cellular mechanism that can be exploited to selectively target individual members of miRNA families. We anticipate that targeting miR-aU14 provides exciting therapeutic options for preventing herpesvirus reactivations in HHV-6-associated disorders.}, language = {en} } @techreport{GrigorjewDiederichHossfeldetal.2022, type = {Working Paper}, author = {Grigorjew, Alexej and Diederich, Philip and Hoßfeld, Tobias and Kellerer, Wolfgang}, title = {Affordable Measurement Setups for Networking Device Latency with Sub-Microsecond Accuracy}, series = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, journal = {W{\"u}rzburg Workshop on Next-Generation Communication Networks (WueWoWas'22)}, doi = {10.25972/OPUS-28075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280751}, pages = {5}, year = {2022}, abstract = {This document presents a networking latency measurement setup that focuses on affordability and universal applicability, and can provide sub-microsecond accuracy. It explains the prerequisites, hardware choices, and considerations to respect during measurement. In addition, it discusses the necessity for exhaustive latency measurements when dealing with high availability and low latency requirements. Preliminary results show that the accuracy is within ±0.02 μs when used with the Intel I350-T2 network adapter.}, subject = {Datennetz}, language = {en} }