@phdthesis{MeiningergebChrist2018, author = {Meininger [geb. Christ], Susanne}, title = {Processing of calcium and magnesium phosphate cements for bone substitution}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The main focus of this thesis was the processing of different calcium and magnesium phosphate cements together with an optimization of mechanical and biological properties. Therefore, different manufacturing techniques like 3D powder printing and centrifugally casting were employed for the fabrication of reinforced or biomedically improved implants. One of the main problems during 3D powder printing is the low green strength of many materials, especially when they are only physically bonded and do not undergo a setting reaction. Such materials need post-treatments like sintering to exhibit their full mechanical performance. However, the green bodies have to be removed from the printer requiring a certain stability. With the help of fiber reinforcement, the green strength of printed gypsum samples could be increased by the addition of polymeric and glass fibers within the printing process. The results showed that fiber reinforcement during 3D powder printing is possible and opens up diverse opportunities to enhance the damage tolerance of green bodies as well as directly printed samples. The transfer to biomedically relevant materials like calcium and magnesium phosphate cements and biocompatible fibers would be the next step towards reinforced patient-specific implants. In a second approach, centrifugally casting derived from construction industries was established for the fabrication of hollow bioceramic cylinders. The aim was the replacement of the diaphysis of long bones, which exhibit a tubular structure with a high density of cortical bone on the fringe. By centrifugation, cement slurries with and without additives could be fabricated to tubes. As a first establishment, the processing parameters regarding the material (e.g. cement composition) as well as the set-up (e.g. rotation times) had to be optimized for each system. In respect of mechanics, such tubes can keep up with 3D powder printed tubes, although the mechanical performance of 3D printed tubes is strongly dependent on printing directions. Additionally, some material compositions like dual setting systems cannot be fabricated by 3D powder printing. Therefore, a transfer of such techniques to centrifugally casting enabled the fabrication of tubular structures with an extremely high damage tolerance due to high deformation ability. A similar effect was achieved by fiber (mesh) addition, as already shown for 3D powder printing. Another possibility of centrifugally casting is the combination of different materials resulting in graded structures to adjust implant degradation or bone formation. This became especially apparent for the incorporation of the antibiotic vancomycin, which is used for the treatment of bacterial implant infections. A long-term release could be achieved by the entrapment of the drug between magnesium phosphate cement layers. Therefore, the release of the drug could be regulated by the degradation of the outer shell, which supports the release into an acidic bacterial environment. The centrifugally casting technique exhibited to be a versatile tool for numerous materials and applications including the fabrication of non-centrosymmetric patient-specific implants for the reconstruction of human long bones. The third project aimed to manufacture strontium-substituted magnesium phosphate implants with improved biological behavior by 3D powder printing. As the promoting effect of strontium on bone formation and the inhibitory impact on bone resorption is already well investigated, the incorporation of strontium into a degradable magnesium phosphate cement promised a fast integration and replacement of the implant. Porous structures were obtained with a high pore interconnectivity that is favorable for cell invasion and bone ingrowth. Despite the porosity, the mechanical performance was comparable to pure magnesium phosphate cement with a high reliability of the printed samples as quantitatively determined by Weibull statistics. However, the biological testing was impeded by the high degradation rate and the relating ion release. The high release of phosphate ions into surrounding media and the detachment of cement particles from the surface inhibited osteoblast growth and activity. To distinguish those two effects, a direct and indirect cell seeding is always required for degradable materials. Furthermore, the high phosphate release compared to the strontium release has to be managed during degradation such that the adverse effect of phosphate ions does not overwhelm the bone promoting effect of the strontium ions. The manufacturing techniques presented in this thesis together with the material property improvement offer a diverse tool box for the fabrication of patient-specific implants. This includes not just the individual implant shape but also the application like bone growth promotion, damage tolerance and local drug delivery. Therefore, this can act as the basis for further research on specific medical indications.}, subject = {Calciumphosphate}, language = {en} } @article{KowalewiczVorndranFeichtneretal.2021, author = {Kowalewicz, Katharina and Vorndran, Elke and Feichtner, Franziska and Waselau, Anja-Christina and Brueckner, Manuel and Meyer-Lindenberg, Andrea}, title = {In-vivo degradation behavior and osseointegration of 3D powder-printed calcium magnesium phosphate cement scaffolds}, series = {Materials}, volume = {14}, journal = {Materials}, number = {4}, issn = {1996-1944}, doi = {10.3390/ma14040946}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228929}, year = {2021}, abstract = {Calcium magnesium phosphate cements (CMPCs) are promising bone substitutes and experience great interest in research. Therefore, in-vivo degradation behavior, osseointegration and biocompatibility of three-dimensional (3D) powder-printed CMPC scaffolds were investigated in the present study. The materials Mg225 (Ca\(_{0.75}\)Mg\(_{2.25}\)(PO\(_4\))\(_2\)) and Mg225d (Mg225 treated with diammonium hydrogen phosphate (DAHP)) were implanted as cylindrical scaffolds (h = 5 mm, {\O} = 3.8 mm) in both lateral femoral condyles in rabbits and compared with tricalcium phosphate (TCP). Treatment with DAHP results in the precipitation of struvite, thus reducing pore size and overall porosity and increasing pressure stability. Over 6 weeks, the scaffolds were evaluated clinically, radiologically, with Micro-Computed Tomography (µCT) and histological examinations. All scaffolds showed excellent biocompatibility. X-ray and in-vivo µCT examinations showed a volume decrease and increasing osseointegration over time. Structure loss and volume decrease were most evident in Mg225. Histologically, all scaffolds degraded centripetally and were completely traversed by new bone, in which the remaining scaffold material was embedded. While after 6 weeks, Mg225d and TCP were still visible as a network, only individual particles of Mg225 were present. Based on these results, Mg225 and Mg225d appear to be promising bone substitutes for various loading situations that should be investigated further.}, language = {en} }