@article{SchwarzScharfScherpfetal.2019, author = {Schwarz, Christopher and Scharf, Lennart T. and Scherpf, Thorsten and Weismann, Julia and Gessner, Viktoria H.}, title = {Isolation of the Metalated Ylides [Ph3P-C-CN]M (M=Li, Na, K): Influence of the Metal Ion on the Structure and Bonding Situation}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, doi = {10.1002/chem.201805421}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235445}, pages = {2793-2802}, year = {2019}, abstract = {The isolation and structural characterization of the cyanido-substituted metalated ylides [Ph3P-C-CN]M (1-M; M=Li, Na, K) are reported with lithium, sodium, and potassium as metal cations. In the solid-state, most different aggregates could be determined depending on the metal and additional Lewis bases. The crown-ether complexes of sodium (1-Na) and potassium (1-K) exhibited different structures, with sodium preferring coordination to the nitrogen end, whereas potassium binds in an unusual η2-coordination mode to the two central carbon atoms. The formation of the yldiide was accompanied by structural changes leading to shorter C-C and longer C-N bonds. This could be attributed to the delocalization of the free electron pairs at the carbon atom into the antibonding orbitals of the CN moiety, which was confirmed by IR spectroscopy and computational studies. Detailed density functional theory calculations show that the changes in the structure and the bonding situation were most pronounced in the lithium compounds due to the higher covalency.}, language = {en} } @article{ScherpfSchwarzScharfetal.2018, author = {Scherpf, Thorsten and Schwarz, Christopher and Scharf, Lennart T. and Zur, Jana-Alina and Helbig, Andeas and Gessner, Viktoria H.}, title = {Ylide-Functionalized Phosphines: Strong Donor Ligands for Homogeneous Catalysis}, series = {Angewandte Chemie - International Edition}, volume = {57}, journal = {Angewandte Chemie - International Edition}, number = {39}, doi = {10.1002/anie.201805372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228551}, pages = {12859-12864}, year = {2018}, abstract = {Phosphines are important ligands in homogenous catalysis and have been crucial for many advances, such as in cross-coupling, hydrofunctionalization, or hydrogenation reactions. Herein we report the synthesis and application of a novel class of phosphines bearing ylide substituents. These phosphines are easily accessible via different synthetic routes from commercially available starting materials. Owing to the extra donation from the ylide group to the phosphorus center the ligands are unusually electron-rich and can thus function as strong electron donors. The donor capacity surpasses that of commonly used phosphines and carbenes and can easily be tuned by changing the substitution pattern at the ylidic carbon atom. The huge potential of ylide-functionalized phosphines in catalysis is demonstrated by their use in gold catalysis. Excellent performance at low catalyst loadings under mild reaction conditions is thus seen in different types of transformations.}, language = {en} }