@article{TriphanJobstAnjorinetal.2017, author = {Triphan, Simon M. F. and Jobst, Bertram J. and Anjorin, Angela and Sedlaczek, Oliver and Wolf, Ursula and Terekhov, Maxim and Hoffmann, Christian and Ley, Sebastian and D{\"u}ber, Christoph and Biederer, J{\"u}rgen and Kauczor, Hans-Ulrich and Jakob, Peter M. and Wielp{\"u}tz, Mark O.}, title = {Reproducibility and comparison of oxygen-enhanced T\(_1\) quantification in COPD and asthma patients}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0172479}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171833}, year = {2017}, abstract = {T\(_1\) maps have been shown to yield useful diagnostic information on lung function in patients with chronic obstructive pulmonary disease (COPD) and asthma, both for native T\(_1\) and ΔT\(_1\), the relative reduction while breathing pure oxygen. As parameter quantification is particularly interesting for longitudinal studies, the purpose of this work was both to examine the reproducibility of lung T\(_1\) mapping and to compare T\(_1\) found in COPD and asthma patients using IRSnapShotFLASH embedded in a full MRI protocol. 12 asthma and 12 COPD patients (site 1) and further 15 COPD patients (site 2) were examined on two consecutive days. In each patient, T\(_1\) maps were acquired in 8 single breath-hold slices, breathing first room air, then pure oxygen. Maps were partitioned into 12 regions each to calculate average values. In asthma patients, the average T\(_{1,RA}\) = 1206ms (room air) was reduced to T\(_{1,O2}\) = 1141ms under oxygen conditions (ΔT\(_1\) = 5.3\%, p < 5⋅10\(^{-4})\), while in COPD patients both native T\(_{1,RA}\) = 1125ms was significantly shorter (p < 10\(^{-3})\) and the relative reduction to T\(_{1,O2}\) = 1081ms on average ΔT\(_1\) = 4.2\%(p < 10\(^{-5}\)). On the second day, with T\(_{1,RA}\) = 1186ms in asthma and T\(_{1,RA}\) = 1097ms in COPD, observed values were slightly shorter on average in all patient groups. ΔT\(_1\) reduction was the least repeatable parameter and varied from day to day by up to 23\% in individual asthma and 30\% in COPD patients. While for both patient groups T\(_1\) was below the values reported for healthy subjects, the T\(_1\) and ΔT\(_1\) found in asthmatics lies between that of the COPD group and reported values for healthy subjects, suggesting a higher blood volume fraction and better ventilation. However, it could be demonstrated that lung T\(_1\) quantification is subject to notable inter-examination variability, which here can be attributed both to remaining contrast agent from the previous day and the increased dependency of lung T\(_1\) on perfusion and thus current lung state.}, language = {en} } @article{PetritschKosmalaWengetal.2019, author = {Petritsch, Berhard and Kosmala, Aleksander and Weng, Andreas Max and Bley, Thorsten Alexander}, title = {Tin-filtered 100kV ultra-low-dose CT of the paranasal sinus: initial clinical results}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/ journal.pone.0216295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204127}, pages = {e0216295}, year = {2019}, abstract = {Objectives To investigate the feasibility, diagnostic image quality and radiation dose of 3\(^{rd}\) generation dual-source computed tomography (CT) using a tin-filtered 100 kV protocol in patients with suspected acute inflammatory sinus disease. Methods We retrospectively evaluated 109 consecutive patients who underwent CT (Siemens SOMATOM Force, Erlangen, Germany) of the paranasal sinus with a new tin-filtered scanprotocol (Sn100 kV; tube current 35 mAs) using iterative reconstruction. Two readers independently assessed subjective image quality using a five-point Likert scale (1 = excellent, 5 = non-diagnostic). Inter-observer agreement was calculated and expressed as percentage of agreement. Noise was determined for calculation of signal-to-noise-ratio (SNR). Effective radiation dose (ED) was calculated from the dose-length-product (DLP). Results All examinations showed diagnostic image quality regarding evaluation of inflammatory sinus disease. On average, subjective general image quality was rated moderate (= 3) with a percentage of agreement between the observers of 81\%. The mean image noise was 14.3 HU. The calculated median SNR was 6.0 for intraorbital fat, and 3.6 for the vitreous body, respectively. The median DLP was 2.1 mGy*cm, resulting in a median ED of 0.012 mSv. Conclusions Taking the study limitations into account, ultra-low-dose tin-filtered CT of the paranasal sinus at a tube voltage of 100 kV utilizing an iterative reconstruction algorithm provides for reliable exclusion of suspected acute inflammatory sinus disease in 100\% of the cases.}, language = {en} }