@phdthesis{Allgaier2024, author = {Allgaier, Johannes}, title = {Machine Learning Explainability on Multi-Modal Data using Ecological Momentary Assessments in the Medical Domain}, doi = {10.25972/OPUS-35118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-351189}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Introduction. Mobile health (mHealth) integrates mobile devices into healthcare, enabling remote monitoring, data collection, and personalized interventions. Machine Learning (ML), a subfield of Artificial Intelligence (AI), can use mHealth data to confirm or extend domain knowledge by finding associations within the data, i.e., with the goal of improving healthcare decisions. In this work, two data collection techniques were used for mHealth data fed into ML systems: Mobile Crowdsensing (MCS), which is a collaborative data gathering approach, and Ecological Momentary Assessments (EMA), which capture real-time individual experiences within the individual's common environments using questionnaires and sensors. We collected EMA and MCS data on tinnitus and COVID-19. About 15 \% of the world's population suffers from tinnitus. Materials \& Methods. This thesis investigates the challenges of ML systems when using MCS and EMA data. It asks: How can ML confirm or broad domain knowledge? Domain knowledge refers to expertise and understanding in a specific field, gained through experience and education. Are ML systems always superior to simple heuristics and if yes, how can one reach explainable AI (XAI) in the presence of mHealth data? An XAI method enables a human to understand why a model makes certain predictions. Finally, which guidelines can be beneficial for the use of ML within the mHealth domain? In tinnitus research, ML discerns gender, temperature, and season-related variations among patients. In the realm of COVID-19, we collaboratively designed a COVID-19 check app for public education, incorporating EMA data to offer informative feedback on COVID-19-related matters. This thesis uses seven EMA datasets with more than 250,000 assessments. Our analyses revealed a set of challenges: App user over-representation, time gaps, identity ambiguity, and operating system specific rounding errors, among others. Our systematic review of 450 medical studies assessed prior utilization of XAI methods. Results. ML models predict gender and tinnitus perception, validating gender-linked tinnitus disparities. Using season and temperature to predict tinnitus shows the association of these variables with tinnitus. Multiple assessments of one app user can constitute a group. Neglecting these groups in data sets leads to model overfitting. In select instances, heuristics outperform ML models, highlighting the need for domain expert consultation to unveil hidden groups or find simple heuristics. Conclusion. This thesis suggests guidelines for mHealth related data analyses and improves estimates for ML performance. Close communication with medical domain experts to identify latent user subsets and incremental benefits of ML is essential.}, subject = {Maschinelles Lernen}, language = {en} } @phdthesis{Wanner2022, author = {Wanner, Jonas Paul}, title = {Artificial Intelligence for Human Decision-Makers: Systematization, Perception, and Adoption of Intelligent Decision Support Systems in Industry 4.0}, doi = {10.25972/OPUS-25901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259014}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Innovative possibilities for data collection, networking, and evaluation are unleashing previously untapped potential for industrial production. However, harnessing this potential also requires a change in the way we work. In addition to expanded automation, human-machine cooperation is becoming more important: The machine achieves a reduction in complexity for humans through artificial intelligence. In fractions of a second large amounts of data of high decision quality are analyzed and suggestions are offered. The human being, for this part, usually makes the ultimate decision. He validates the machine's suggestions and, if necessary, (physically) executes them. Both entities are highly dependent on each other to accomplish the task in the best possible way. Therefore, it seems particularly important to understand to what extent such cooperation can be effective. Current developments in the field of artificial intelligence show that research in this area is particularly focused on neural network approaches. These are considered to be highly powerful but have the disadvantage of lacking transparency. Their inherent computational processes and the respective result reasoning remain opaque to humans. Some researchers assume that human users might therefore reject the system's suggestions. The research domain of explainable artificial intelligence (XAI) addresses this problem and tries to develop methods to realize systems that are highly efficient and explainable. This work is intended to provide further insights relevant to the defined goal of XAI. For this purpose, artifacts are developed that represent research achievements regarding the systematization, perception, and adoption of artificially intelligent decision support systems from a user perspective. The focus is on socio-technical insights with the aim to better understand which factors are important for effective human-machine cooperation. The elaborations predominantly represent extended grounded research. Thus, the artifacts imply an extension of knowledge in order to develop and/ or test effective XAI methods and techniques based on this knowledge. Industry 4.0, with a focus on maintenance, is used as the context for this development.}, subject = {K{\"u}nstliche Intelligenz}, language = {en} }