@phdthesis{Lauerbach2020, author = {Lauerbach, Laura}, title = {Stochastic Homogenization in the Passage from Discrete to Continuous Systems - Fracture in Composite Materials}, doi = {10.25972/OPUS-21453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The work in this thesis contains three main topics. These are the passage from discrete to continuous models by means of \$\Gamma\$-convergence, random as well as periodic homogenization and fracture enabled by non-convex Lennard-Jones type interaction potentials. Each of them is discussed in the following. We consider a discrete model given by a one-dimensional chain of particles with randomly distributed interaction potentials. Our interest lies in the continuum limit, which yields the effective behaviour of the system. This limit is achieved as the number of atoms tends to infinity, which corresponds to a vanishing distance between the particles. The starting point of our analysis is an energy functional in a discrete system; its continuum limit is obtained by variational \$\Gamma\$-convergence. The \$\Gamma\$-convergence methods are combined with a homogenization process in the framework of ergodic theory, which allows to focus on heterogeneous systems. On the one hand, composite materials or materials with impurities are modelled by a stochastic or periodic distribution of particles or interaction potentials. On the other hand, systems of one species of particles can be considered as random in cases when the orientation of particles matters. Nanomaterials, like chains of atoms, molecules or polymers, are an application of the heterogeneous chains in experimental sciences. A special interest is in fracture in such heterogeneous systems. We consider interaction potentials of Lennard-Jones type. The non-standard growth conditions and the convex-concave structure of the Lennard-Jones type interactions yield mathematical difficulties, but allow for fracture. The interaction potentials are long-range in the sense that their modulus decays slower than exponential. Further, we allow for interactions beyond nearest neighbours, which is also referred to as long-range. The main mathematical issue is to bring together the Lennard-Jones type interactions with ergodic theorems in the limiting process as the number of particles tends to infinity. The blow up at zero of the potentials prevents from using standard extensions of the Akcoglu-Krengel subadditive ergodic theorem. We overcome this difficulty by an approximation of the interaction potentials which shows suitable Lipschitz and H{\"o}lder regularity. Beyond that, allowing for continuous probability distributions instead of only finitely many different potentials leads to a further challenge. The limiting integral functional of the energy by means of \$\Gamma\$-convergence involves a homogenized energy density and allows for fracture, but without a fracture contribution in the energy. In order to refine this result, we rescale our model and consider its \$\Gamma\$-limit, which is of Griffith's type consisting of an elastic part and a jump contribution. In a further approach we study fracture at the level of the discrete energies. With an appropriate definition of fracture in the discrete setting, we define a fracture threshold separating the region of elasticity from that of fracture and consider the pointwise convergence of this threshold. This limit turns out to coincide with the one obtained in the variational \$\Gamma\$-convergence approach.}, subject = {Homogenisierung }, language = {en} } @phdthesis{Schaeffner2015, author = {Sch{\"a}ffner, Mathias}, title = {Multiscale analysis of non-convex discrete systems via \(\Gamma\)-convergence}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122349}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The subject of this thesis is the rigorous passage from discrete systems to continuum models via variational methods. The first part of this work studies a discrete model describing a one-dimensional chain of atoms with finite range interactions of Lennard-Jones type. We derive an expansion of the ground state energy using \(\Gamma\)-convergence. In particular, we show that a variant of the Cauchy-Born rule holds true for the model under consideration. We exploit this observation to derive boundary layer energies due to asymmetries of the lattice at the boundary or at cracks of the specimen. Hereby we extend several results obtained previously for models involving only nearest and next-to-nearest neighbour interactions by Braides and Cicalese and Scardia, Schl{\"o}merkemper and Zanini. The second part of this thesis is devoted to the analysis of a quasi-continuum (QC) method. To this end, we consider the discrete model studied in the first part of this thesis as the fully atomistic model problem and construct an approximation based on a QC method. We show that in an elastic setting the expansion by \(\Gamma\)-convergence of the fully atomistic energy and its QC approximation coincide. In the case of fracture, we show that this is not true in general. In the case of only nearest and next-to-nearest neighbour interactions, we give sufficient conditions on the QC approximation such that, also in case of fracture, the minimal energies of the fully atomistic energy and its approximation coincide in the limit.}, subject = {Gamma-Konvergenz}, language = {en} }