@phdthesis{Plichta2009, author = {Plichta, Michael M.}, title = {Neural correlates of delay discounting: Effects of dopamine bioavailability and implications for attention-deficit/hyperactivity disorder (ADHD)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35953}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Humans and other animals share choice preference for smaller-but-sooner over later-but-larger rewards, indicating that the subjective value of a reward is discounted as a function of time. This phenomenon referred to as delay discounting (DD), represents one facet of impulsivity which is inherently connected with reward processing and, within a certain range, adaptive. Maladaptive levels, however, can lead to suboptimal decision-making and represent important characteristics of psychopathologies such as attention-deficit/hyperactivity disorder (ADHD). In line with a proposed influence of dysregulated dopamine (DA) levels on impulsivity, neural structures involved in DD (the ventral-striatum [VS]; orbitofrontal cortex [OFC]) are highly innervated by dopaminergic neurons. However, studies explicitly testing the triadic interplay of dopaminergic neurotransmission, impulsivity and brain activation during intertemporal choice are missing. Therefore, the first study of the thesis examined the effect of different DA-bioavailability levels, indicated by a genetic polymorphism (Val158Met) in the gene of the catechol-O-methyltransferase, on the association of delay discounting and OFC activation. OFC response to monetary rewards that varied by delay-to-delivery was recorded with functional near-infrared spectroscopy (fNIRS) in a sample of 49 healthy human subjects. The results suggest a DA-related enhancement in OFC function from low (low DA level) to partial (intermediate DA level) and full (high DA level) reward delay sensitivity. Furthermore, DA-bioavailability was shown to moderate the association of neural reward delay sensitivity and impulsivity: OFC reward delay sensitivity was strongly correlated with impulsivity at intermediate DA-levels, but not at low or high DA-levels where impulsivity was related to delay-independent OFC amplitudes. It is concluded that DA-level should be considered as a crucial factor whenever impulsivity-related brain activation, in particular to reward delay, is examined in healthy subjects. Dysfunctional reward processing, accompanied by a limited ability to tolerate reward delays (delay aversion), has been proposed as an important feature in ADHD putatively caused by striatal hypo-dopaminergia. Therefore, the aim of the second study of this thesis was to examine subcortical processing of reward delays and to test for neural indicators of a negative emotional response to delay periods. Using functional magnetic resonance imaging (fMRI), brain activation in adult patients with ADHD (n=14) and healthy control subjects (n=12) was recorded during the processing of immediate and delayed rewards. Compared with healthy control subjects, hyporesponsiveness of the VS reward system was evident in patients with ADHD for both immediate and delayed rewards. In contrast, delayed rewards evoked hyperactivation in the dorsal caudate nucleus and the amygdala of ADHD patients, corroborating the central predictions of the delay aversion hypothesis. In combination both studies support the conception of a close link between delay discounting, brain activation and dopaminergic neurotransmission. The results implicate that studies on neural correlates of DD have to account for the DA-bioavailability level and for a negative emotional response to reward delays.}, subject = {Impulsivit{\"a}t}, language = {en} } @phdthesis{Peters2023, author = {Peters, Katharina}, title = {Biological Substrates of Waiting Impulsivity in Children and Adolescents with and without ADHD}, doi = {10.25972/OPUS-24636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Focus of the present work were the questions whether and how the concept of waiting impulsivity (WI), defined as the ability to regulate a response in anticipation of reward and measured by the 4-choice serial reaction time task (4-CSRTT), may contribute to our understanding of Attention-Deficit/Hyperactivity Disorder (ADHD) and its neurobiological underpinnings. To address this topic, two studies were conducted: in a first study, the relationship be-tween 4-CSRTT behavioral measures, neural correlates and ADHD symptom domains, i.e. inattention (IA) and hyperactivity/impulsivity (H/I) was explored in a pooled sample of 90 children and adolescents with (n=44) and without (n=46) ADHD diagnosis. As ex-pected, IA was associated with dorsolateral prefrontal brain regions linked with executive functions and attentional control, which was evident on the structural and the functional level. Higher levels of both IA and H/I covaried with decreased activity in the right ven-trolateral prefrontal cortex (PFC), a central structure for response inhibition. Moderation analyses revealed that H/I-related decreased activation in this region did not map linearly on difficulties on the behavioral level: brain activation was a significant predictor of task accuracy only, when H/I symptoms were low/absent but not for clinically relevant ADHD symptoms. Further, H/I was implicated in dysfunctional top-down control of reward eval-uation. Both symptom domains correlated positively with hippocampus (HC) activity in anticipation of reward. In addition, for high H/I symptoms, greater activation in the HC was found to correlate with higher motivation on the behavioral level, indicating that rein-forcement-learning and/or contingency awareness may contribute to altered reward pro-cessing in ADHD patients. In a second study, the possible serotonergic modulation of WI and the ADHD-WI relation-ship was addressed in a sub-sample comprising 86 children and adolescents of study I. The effects of a functional variant in the gene coding for the rate-limiting enzyme in the synthesis of brain serotonin on behavior and structure or function of the WI-network was investigated. Moderation analyses revealed that on the behavioral level, a negative corre-lation between accuracy and IA was found only in GG-homozygotes, whereas no signifi-cant relationship emerged for carriers of the T-allele. This is in line with previous reports of differential effects of serotonergic modulation on attentional performance depending on the presence of ADHD symptoms. A trend-wise interaction effect of genotype and IA for regional volume of the right middle frontal gyrus was interpreted as a hint towards an involvement of the PFC in this relationship, although a more complex mechanism includ-ing developmental effects can be assumed. In addition, interaction effects of genotype and IA were found for brain activation in the amygdala (AMY) und HC during perfor-mance of the 4-CSRTT, while another interaction was found for H/I symptoms and geno-type for right AMY volume. These findings indicate a serotonergic modulation of coding of the emotional value of reward during performance of the 4-CSRTT that varies de-pending on the extent of psychopathology-associated traits. Taken together, it was shown that the 4-CSRTT taps distinct domains of impulsivity with relevance to ADHD symptomatology: (proactive) response inhibition difficulties in relation with anticipation of reward. Furthermore, the two symptom domains, IA and H/I, contrib-ute differently to WI, which emphasizes the need to distinguish both in the research of ADHD. The results of study II emphasized the relevance of serotonergic transmission especially for attentional control and emotional processing. Although the present findings need replication and further refinement in more homogenous age groups, the use of the 4-CSRTT with a dimensional approach is a very promising strategy, which will hopefully extend our understanding of impulsivity-related mental disorders in the future.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} }