@article{MetznerHerzogHeckeletal.2022, author = {Metzner, Valentin and Herzog, Gloria and Heckel, Tobias and Bischler, Thorsten and Hasinger, Julia and Otto, Christoph and Fassnacht, Martin and Geier, Andreas and Seyfried, Florian and Dischinger, Ulrich}, title = {Liraglutide + PYY\(_{3-36}\) combination therapy mimics effects of Roux-en-Y bypass on early NAFLD whilst lacking-behind in metabolic improvements}, series = {Journal of Clinical Medicine}, volume = {11}, journal = {Journal of Clinical Medicine}, number = {3}, issn = {2077-0383}, doi = {10.3390/jcm11030753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-255244}, year = {2022}, abstract = {Background: Treatment options for NAFLD are still limited. Bariatric surgery, such as Roux-en-Y gastric bypass (RYGB), has been shown to improve metabolic and histologic markers of NAFLD. Glucagon-like-peptide-1 (GLP-1) analogues lead to improvements in phase 2 clinical trials. We directly compared the effects of RYGB with a treatment using liraglutide and/or peptide tyrosine tyrosine 3-36 (PYY\(_{3-36}\)) in a rat model for early NAFLD. Methods: Obese male Wistar rats (high-fat diet (HFD)-induced) were randomized into the following treatment groups: RYGB, sham-operation (sham), liraglutide (0.4 mg/kg/day), PYY\(_{3-36}\) (0.1 mg/kg/day), liraglutide+PYY\(_{3-36}\), and saline. After an observation period of 4 weeks, liver samples were histologically evaluated, ELISAs and RNA sequencing + RT-qPCRs were performed. Results: RYGB and liraglutide+PYY\(_{3-36}\) induced a similar body weight loss and, compared to sham/saline, marked histological improvements with significantly less steatosis. However, only RYGB induced significant metabolic improvements (e.g., adiponectin/leptin ratio 18.8 ± 11.8 vs. 2.4 ± 1.2 in liraglutide+PYY\(_{3-36}\)- or 1.4 ± 0.9 in sham-treated rats). Furthermore, RNA sequencing revealed a high number of differentially regulated genes in RYGB treated animals only. Conclusions: The combination therapy of liraglutide+PYY\(_{3-36}\) partly mimics the positive effects of RYGB on weight reduction and on hepatic steatosis, while its effects on metabolic function lack behind RYGB.}, language = {en} } @phdthesis{Bankoglu2016, author = {Bankoglu, Ezgi Eyl{\"u}l}, title = {Oxidative status and genomic damage in an obesity model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137566}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Several cohort studies showed that obesity increases the risk of chronic disease such as T2DM, hypertension and non-alcoholic fatty liver disease and various types of cancer. Different factors were described that might be involving in these diseases in obesity. Some of these suggested factors were chronic infection, elevated free fatty acids, increased ROS formation, mitochondrial dysfunction and raised NAPDH oxidase activity. Obesity is a multifactorial disease and it is very hard to distinguish between all of these factors. In this study, we wanted to focus on the association between obesity, oxidative stress and genomic damage in kidney, liver and colon, which are the most relevant organs for cancer risk according to the cohort studies. Our findings indicated elevated oxidative stress in kidney, liver and colon together with elevated lipid, RNA and DNA oxidation in the whole body. Additionally, we were able to show increased DNA damage in kidney, liver and colon. Since obesity has become an epidemic all over the world, possible therapeutic applications such as life style changes (diet and sport), pharmacological supplements and various type of surgeries are increasing. As a second question, we focused on the effect of weight loss, which is supplied either by Roux-en-Y gastric bypass surgery or by caloric restriction designed in a way to provide the same extent of weight loss, on oxidative stress and genomic damage. Our results indicated that weight loss either by gastric bypass surgery or by caloric restriction led to reduced oxidative stress and genomic damage in kidney, liver and colon. We could not find any difference between the weight loss methods, except the DNA oxidation and repair marker urinary 8-oxodG, which was still elevated after RYGB, but not after caloric restriction. It is known that hyperinsulinemia and in the long term T2DM are among the biggest concerns in obese individuals. Since we know the mutagenic potential of elevated insulin levels from previous data in our working group, the correlation between the highly mutagenic DNA DBSs marker, γ-H2AX and the plasma insulin level was tested and the findings indicated a positive correlation. In order to demonstrate the association between insulin-related oxidative stress and genomic damage, we used in vitro and in vivo models with Pten deficiency. In this part of study, the work was focused on liver. Pten is a known negative regulator of the PI3K/Akt pathway, which is responsible for the elevated NADPH oxidase activity and mitochondrial dysfunction through elevated insulin levels. Pten inhibition or deficiency were used to sensitize the system to insulin. Non-transformed immortalized human hepatocytes were used to show the mutagenic potential of elevated insulin and these in vitro data revealed once more the link between insulin signaling, elevated oxidative stress and genomic damage. Since the metabolic function of the liver is not only due to the extent of the hepatic insulin response but is also affected by systemic interactions, a whole-body Pten haplodeficient mouse model with an additional Pten+/-/Akt2-/- group was utilized for in vivo investigation of insulin-mediated toxicity. Our findings in this model suggested that Pten deficiency alone can cause an increase in oxidative stress. HFD alone was sufficient to increase the expression of HO-1 and genomic damage significantly. Moreover, the combination (whole-body Pten haplodeficient mice fed with HFD) showed significantly elevated oxidative stress and genomic damage in mouse liver. However, Akt2 knockout could only reduce the oxidative stress and DNA damage in high fat diet fed mice significantly. All these findings demonstrated that obesity can induce oxidative stress and genomic damage. Elevated insulin levels are associated with obesity-mediated oxidative stress and genomic damage. However, the underlying mechanisms are surely multifaceted and complicated. For example, Pten as oncogene might also induce other mechanisms besides the elevation of the PI3K/Akt pathway activity. In conclusion, it is clear that oxidative stress and DNA damage are linked to obesity and that weight loss can reduce these two factors. Since DNA-damage is associated with an elevated cancer risk, it might be logical to use an antioxidant therapy in obese individuals to reduce the side effects and oxidative stress dependent mutagenicity and cancer risk in these individuals. However, much more research will be needed to support this idea experimentally.}, subject = {{\"U}bergewicht}, language = {en} }