@phdthesis{Griebel2022, author = {Griebel, Matthias}, title = {Applied Deep Learning: from Data to Deployment}, doi = {10.25972/OPUS-27765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-277650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Novel deep learning (DL) architectures, better data availability, and a significant increase in computing power have enabled scientists to solve problems that were considered unassailable for many years. A case in point is the "protein folding problem", a 50-year-old grand challenge in biology that was recently solved by the DL-system AlphaFold. Other examples comprise the development of large DL-based language models that, for instance, generate newspaper articles that hardly differ from those written by humans. However, developing unbiased, reliable, and accurate DL models for various practical applications remains a major challenge - and many promising DL projects get stuck in the piloting stage, never to be completed. In light of these observations, this thesis investigates the practical challenges encountered throughout the life cycle of DL projects and proposes solutions to develop and deploy rigorous DL models. The first part of the thesis is concerned with prototyping DL solutions in different domains. First, we conceptualize guidelines for applied image recognition and showcase their application in a biomedical research project. Next, we illustrate the bottom-up development of a DL backend for an augmented intelligence system in the manufacturing sector. We then turn to the fashion domain and present an artificial curation system for individual fashion outfit recommendations that leverages DL techniques and unstructured data from social media and fashion blogs. After that, we showcase how DL solutions can assist fashion designers in the creative process. Finally, we present our award-winning DL solution for the segmentation of glomeruli in human kidney tissue images that was developed for the Kaggle data science competition HuBMAP - Hacking the Kidney. The second part continues the development path of the biomedical research project beyond the prototyping stage. Using data from five laboratories, we show that ground truth estimation from multiple human annotators and training of DL model ensembles help to establish objectivity, reliability, and validity in DL-based bioimage analyses. In the third part, we present deepflash2, a DL solution that addresses the typical challenges encountered during training, evaluation, and application of DL models in bioimaging. The tool facilitates the objective and reliable segmentation of ambiguous bioimages through multi-expert annotations and integrated quality assurance. It is embedded in an easy-to-use graphical user interface and offers best-in-class predictive performance for semantic and instance segmentation under economical usage of computational resources.}, language = {en} }