@article{DhillonDahmsKuebertFlocketal.2020, author = {Dhillon, Maninder Singh and Dahms, Thorsten and Kuebert-Flock, Carina and Borg, Erik and Conrad, Christopher and Ullmann, Tobias}, title = {Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany}, series = {Remote Sensing}, volume = {12}, journal = {Remote Sensing}, number = {11}, issn = {2072-4292}, doi = {10.3390/rs12111819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-207845}, year = {2020}, abstract = {This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (<600 g/m\(^2\)) and significant p-value (<0.05) during the study period. However, inputting MODIS data makes the models underperform, with low R2 (<0.68) and high RMSE (>600 g/m\(^2\)). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat).}, language = {en} } @article{KnauerGessnerFensholtetal.2017, author = {Knauer, Kim and Gessner, Ursula and Fensholt, Rasmus and Forkuor, Gerald and Kuenzer, Claudia}, title = {Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment}, series = {Remote Sensing}, volume = {9}, journal = {Remote Sensing}, number = {2}, doi = {10.3390/rs9020132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171905}, year = {2017}, abstract = {Burkina Faso ranges amongst the fastest growing countries in the world with an annual population growth rate of more than three percent. This trend has consequences for food security since agricultural productivity is still on a comparatively low level in Burkina Faso. In order to compensate for the low productivity, the agricultural areas are expanding quickly. The mapping and monitoring of this expansion is difficult, even on the basis of remote sensing imagery, since the extensive farming practices and frequent cloud coverage in the area make the delineation of cultivated land from other land cover and land use types a challenging task. However, as the rapidly increasing population could have considerable effects on the natural resources and on the regional development of the country, methods for improved mapping of LULCC (land use and land cover change) are needed. For this study, we applied the newly developed ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) framework to generate high temporal (8-day) and high spatial (30 m) resolution NDVI time series for all of Burkina Faso for the years 2001, 2007, and 2014. For this purpose, more than 500 Landsat scenes and 3000 MODIS scenes were processed with this automated framework. The generated ESTARFM NDVI time series enabled extraction of per-pixel phenological features that all together served as input for the delineation of agricultural areas via random forest classification at 30 m spatial resolution for entire Burkina Faso and the three years. For training and validation, a randomly sampled reference dataset was generated from Google Earth images and based on expert knowledge. The overall accuracies of 92\% (2001), 91\% (2007), and 91\% (2014) indicate the well-functioning of the applied methodology. The results show an expansion of agricultural area of 91\% between 2001 and 2014 to a total of 116,900 km\(^2\). While rainfed agricultural areas account for the major part of this trend, irrigated areas and plantations also increased considerably, primarily promoted by specific development projects. This expansion goes in line with the rapid population growth in most provinces of Burkina Faso where land was still available for an expansion of agricultural area. The analysis of agricultural encroachment into protected areas and their surroundings highlights the increased human pressure on these areas and the challenges of environmental protection for the future.}, language = {en} } @phdthesis{Tzschichholz2014, author = {Tzschichholz, Tristan}, title = {Relative pose estimation of known rigid objects using a novel approach to high-level PMD-/CCD- sensor data fusion with regard to applications in space}, isbn = {978-3-923959-95-2}, issn = {1868-7474}, doi = {10.25972/OPUS-10391}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103918}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work, a novel method for estimating the relative pose of a known object is presented, which relies on an application-specific data fusion process. A PMD-sensor in conjunction with a CCD-sensor is used to perform the pose estimation. Furthermore, the work provides a method for extending the measurement range of the PMD sensor along with the necessary calibration methodology. Finally, extensive measurements on a very accurate Rendezvous and Docking testbed are made to evaluate the performance, what includes a detailed discussion of lighting conditions.}, subject = {Bildverarbeitung}, language = {en} }