@article{GhasemiLatifiPourhashemi2022, author = {Ghasemi, Marziye and Latifi, Hooman and Pourhashemi, Mehdi}, title = {A novel method for detecting and delineating coppice trees in UAV images to monitor tree decline}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {23}, issn = {2072-4292}, doi = {10.3390/rs14235910}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297258}, year = {2022}, abstract = {Monitoring tree decline in arid and semi-arid zones requires methods that can provide up-to-date and accurate information on the health status of the trees at single-tree and sample plot levels. Unmanned Aerial Vehicles (UAVs) are considered as cost-effective and efficient tools to study tree structure and health at small scale, on which detecting and delineating tree crowns is the first step to extracting varied subsequent information. However, one of the major challenges in broadleaved tree cover is still detecting and delineating tree crowns in images. The frequent dominance of coppice structure in degraded semi-arid vegetation exacerbates this problem. Here, we present a new method based on edge detection for delineating tree crowns based on the features of oak trees in semi-arid coppice structures. The decline severity in individual stands can be analyzed by extracting relevant information such as texture from the crown area. Although the method presented in this study is not fully automated, it returned high performances including an F-score = 0.91. Associating the texture indices calculated in the canopy area with the phenotypic decline index suggested higher correlations of the GLCM texture indices with tree decline at the tree level and hence a high potential to be used for subsequent remote-sensing-assisted tree decline studies.}, language = {en} } @article{KleijnWinfreeBartomeusetal.2015, author = {Kleijn, David and Winfree, Rachael and Bartomeus, Ignasi and Carvalheiro, Lu{\´i}sa G. and Henry, Mickael and Isaacs, Rufus and Klein, Alexandra-Maria and Kremen, Claire and M'Gonigle, Leithen K. and Rader, Romina and Ricketts, Taylor H. and Williams, Neal M. and Adamson, Nancy Lee and Ascher, John S. and B{\´a}ldi, Andr{\´a}s and Bat{\´a}ry, P{\´e}ter and Benjamin, Faye and Biesmeijer, Jacobus C. and Blitzer, Eleanor J. and Bommarco, Riccardo and Brand, Mariette R. and Bretagnolle, Vincent and Button, Lindsey and Cariveau, Daniel P. and Chifflet, R{\´e}my and Colville, Jonathan F. and Danforth, Bryan N. and Elle, Elizabeth and Garratt, Michael P. D. and Herzog, Felix and Holzschuh, Andrea and Howlett, Brad G. and Jauker, Frank and Jha, Shalene and Knop, Eva and Krewenka, Kristin M. and Le F{\´e}on, Violette and Mandelik, Yael and May, Emily A. and Park, Mia G. and Pisanty, Gideon and Reemer, Menno and Riedinger, Verena and Rollin, Orianne and Rundl{\"o}f, Maj and Sardi{\~n}as, Hillary S. and Scheper, Jeroen and Sciligo, Amber R. and Smith, Henrik G. and Steffan-Dewenter, Ingolf and Thorp, Robbin and Tscharntke, Teja and Verhulst, Jort and Viana, Blandina F. and Vaissi{\`e}re, Bernard E. and Veldtman, Ruan and Ward, Kimiora L. and Westphal, Catrin and Potts, Simon G.}, title = {Delivery of crop pollination services is an insufficient argument for wild pollinator conservation}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, number = {7414}, doi = {10.1038/ncomms8414}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151879}, year = {2015}, abstract = {There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost- effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost- effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.}, language = {en} }