@article{BartmannFischerHuebneretal.2021, author = {Bartmann, Catharina and Fischer, Leah-Maria and H{\"u}bner, Theresa and M{\"u}ller-Reiter, Max and W{\"o}ckel, Achim and McNeill, Rhiannon V. and Schlaiss, Tanja and Kittel-Schneider, Sarah and K{\"a}mmerer, Ulrike and Diessner, Joachim}, title = {The effects of the COVID-19 pandemic on psychological stress in breast cancer patients}, series = {BMC Cancer}, volume = {21}, journal = {BMC Cancer}, doi = {10.1186/s12885-021-09012-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265802}, year = {2021}, abstract = {Background: The majority of breast cancer patients are severely psychologically affected by breast cancer diagnosis and subsequent therapeutic procedures. The COVID-19 pandemic and associated restrictions on public life have additionally caused significant psychological distress for much of the population. It is therefore plausible that breast cancer patients might be particularly susceptible to the additional psychological stress caused by the pandemic, increasing suffering. In this study we therefore aimed to assess the level of psychological distress currently experienced by a defined group of breast cancer patients in our breast cancer centre, compared to distress levels preCOVID-19 pandemic. Methods: Female breast cancer patients of all ages receiving either adjuvant, neoadjuvant, or palliative therapies were recruited for the study. All patients were screened for current or previous COVID-19 infection. The participants completed a self-designed COVID-19 pandemic questionnaire, the Stress and Coping Inventory (SCI), the National Comprehensive Cancer Network (R) (NCCN (R)) Distress Thermometer (DT), the European Organization for Research and Treatment of Cancer (EORTC) QLQ C30, and the BR23. Results: Eighty-two breast cancer patients were included. Therapy status and social demographic factors did not have a significant effect on the distress caused by the COVID-19 pandemic. The results of the DT pre and during COVID-19 pandemic did not differ significantly. Using the self-designed COVID-19 pandemic questionnaire, we detected three distinct subgroups demonstrating different levels of concerns in relation to SARS-CoV-2. The subgroup with the highest levels of concern reported significantly decreased life quality, related parameters and symptoms. Conclusions: This monocentric study demonstrated that the COVID-19 pandemic significantly affected psychological health in a subpopulation of breast cancer patients. The application of a self-created "COVID-19 pandemic questionnaire"could potentially be used to help identify breast cancer patients who are susceptible to increased psychological distress due to the COVID-19 pandemic, and therefore may need additional intensive psychological support.}, language = {en} } @article{BartmannJanakiRamanFloeteretal.2018, author = {Bartmann, Catharina and Janaki Raman, Sudha R. and Fl{\"o}ter, Jessica and Schulze, Almut and Bahlke, Katrin and Willingstorfer, Jana and Strunz, Maria and W{\"o}ckel, Achim and Klement, Rainer J. and Kapp, Michaela and Djuzenova, Cholpon S. and Otto, Christoph and K{\"a}mmerer, Ulrike}, title = {Beta-hydroxybutyrate (3-OHB) can influence the energetic phenotype of breast cancer cells, but does not impact their proliferation and the response to chemotherapy or radiation}, series = {Cancer \& Metabolism}, volume = {6}, journal = {Cancer \& Metabolism}, number = {8}, doi = {10.1186/s40170-018-0180-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175607}, year = {2018}, abstract = {Background: Ketogenic diets (KDs) or short-term fasting are popular trends amongst supportive approaches for cancer patients. Beta-hydroxybutyrate (3-OHB) is the main physiological ketone body, whose concentration can reach plasma levels of 2-6 mM during KDs or fasting. The impact of 3-OHB on the biology of tumor cells described so far is contradictory. Therefore, we investigated the effect of a physiological concentration of 3 mM 3-OHB on metabolism, proliferation, and viability of breast cancer (BC) cells in vitro. Methods: Seven different human BC cell lines (BT20, BT474, HBL100, MCF-7, MDA-MB 231, MDA-MB 468, and T47D) were cultured in medium with 5 mM glucose in the presence of 3 mM 3-OHB at mild hypoxia (5\% oxygen) or normoxia (21\% oxygen). Metabolic profiling was performed by quantification of the turnover of glucose, lactate, and 3-OHB and by Seahorse metabolic flux analysis. Expression of key enzymes of ketolysis as well as the main monocarboxylic acid transporter MCT2 and the glucose-transporter GLUT1 was analyzed by RT-qPCR and Western blotting. The effect of 3-OHB on short- and long-term cell proliferation as well as chemo- and radiosensitivity were also analyzed. Results: 3-OHB significantly changed the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in BT20 cells resulting in a more oxidative energetic phenotype. MCF-7 and MDA-MB 468 cells had increased ECAR only in response to 3-OHB, while the other three cell types remained uninfluenced. All cells expressed MCT2 and GLUT1, thus being able to uptake the metabolites. The consumption of 3-OHB was not strongly linked to mRNA overexpression of key enzymes of ketolysis and did not correlate with lactate production and glucose consumption. Neither 3-OHB nor acetoacetate did interfere with proliferation. Further, 3-OHB incubation did not modify the response of the tested BC cell lines to chemotherapy or radiation. Conclusions: We found that a physiological level of 3-OHB can change the energetic profile of some BC cell lines. However, 3-OHB failed to influence different biologic processes in these cells, e.g., cell proliferation and the response to common breast cancer chemotherapy and radiotherapy. Thus, we have no evidence that 3-OHB generally influences the biology of breast cancer cells in vitro.}, language = {en} } @article{HagemannKesslerWiesneretal.2014, author = {Hagemann, Carsten and Kessler, Almuth Friederike and Wiesner, Miriam and Denner, Joachim and K{\"a}mmerer, Ulrike and Vince, Giles Hamilton and Linsenmann, Thomas and L{\"o}hr, Mario and Ernestus, Ralf-Ingo}, title = {Expression-analysis of the human endogenous retrovirus HERV-K in human astrocytic tumors}, doi = {10.1186/1756-0500-7-159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110211}, year = {2014}, abstract = {Background The human endogenous retrovirus K (HERV-K) has been acquired by the genome of human ancestors million years ago. It is the most complete of the HERVs with transcriptionally active gag, pol and env genes. Splice variants of env, which are rec, 1.5 kb transcript and Np9 have been suggested to be tumorigenic. Transcripts of HERV-K have been detected in a multitude of human cancers. However, no such reports are available concerning glioblastomas (GBM), the most common malignant brain tumor in adults. Patients have a limited prognosis of 14.6 months in median, despite standard treatment. Therefore, we elucidated whether HERV-K transcripts could be detected in these tumors and serve as new molecular target for treatment. Findings We analyzed human GBM cell lines, tissue samples from patients and primary cell cultures of different passages for HERV-K full length mRNA and env, rec and 1.5 kb transcripts. While the GBM cell lines U138, U251, U343 and GaMG displayed weak and U87 strong expression of the full length HERV-K, the splice products could not be detected, despite a weak expression of env mRNA in U87 cells. Very few tissue samples from patients showed weak expression of env mRNA, but none of the rec or 1.5 kb transcripts. Primary cells expressed the 1.5 kb transcript weakly in early passages, but lost HERV-K expression with extended culture time. Conclusions These data suggest that HERV-K splice products do not play a role in human malignant gliomas and therefore, are not suitable as targets for new therapy regimen.}, language = {en} } @article{HeidtKaemmererFobkeretal.2023, author = {Heidt, Christina and K{\"a}mmerer, Ulrike and Fobker, Manfred and R{\"u}ffer, Andreas and Marquardt, Thorsten and Reuss-Borst, Monika}, title = {Assessment of intestinal permeability and inflammation bio-markers in patients with rheumatoid arthritis}, series = {Nutrients}, volume = {15}, journal = {Nutrients}, number = {10}, issn = {2072-6643}, doi = {10.3390/nu15102386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319377}, year = {2023}, abstract = {Increased intestinal permeability and inflammation, both fueled by dysbiosis, appear to contribute to rheumatoid arthritis (RA) pathogenesis. This single-center pilot study aimed to investigate zonulin, a marker of intestinal permeability, and calprotectin, a marker of intestinal inflammation, measured in serum and fecal samples of RA patients using commercially available kits. We also analyzed plasma lipopolysaccharide (LPS) levels, a marker of intestinal permeability and inflammation. Furthermore, univariate, and multivariate regression analyses were carried out to determine whether or not there were associations of zonulin and calprotectin with LPS, BMI, gender, age, RA-specific parameters, fiber intake, and short-chain fatty acids in the gut. Serum zonulin levels were more likely to be abnormal with a longer disease duration and fecal zonulin levels were inversely associated with age. A strong association between fecal and serum calprotectin and between fecal calprotectin and LPS were found in males, but not in females, independent of other biomarkers, suggesting that fecal calprotectin may be a more specific biomarker than serum calprotectin is of intestinal inflammation in RA. Since this was a proof-of-principle study without a healthy control group, further research is needed to validate fecal and serum zonulin as valid biomarkers of RA in comparison with other promising biomarkers.}, language = {en} } @article{HuebnerWolfgangTheisetal.2022, author = {H{\"u}bner, Theresa and Wolfgang, Tanja and Theis, Ann-Catrin and Steber, Magdalena and Wiedenmann, Lea and W{\"o}ckel, Achim and Diessner, Joachim and Hein, Grit and Gr{\"u}ndahl, Marthe and K{\"a}mmerer, Ulrike and Kittel-Schneider, Sarah and Bartmann, Catharina}, title = {The impact of the COVID-19 pandemic on stress and other psychological factors in pregnant women giving birth during the first wave of the pandemic}, series = {Reproductive Health}, volume = {19}, journal = {Reproductive Health}, number = {1}, doi = {10.1186/s12978-022-01493-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300189}, year = {2022}, abstract = {Background The onset of mental illness such as depression and anxiety disorders in pregnancy and postpartum period is common. The coronavirus induced disease 2019 (COVID-19) pandemic and the resulting public policy responses represent an exceptional situation worldwide and there are hints for adverse psychosocial impact, hence, the study of psychological effects of the pandemic in women during hospitalization for delivery and in the postpartum period is highly relevant. Methods Patients who gave birth during the first wave of the COVID-19 pandemic in Germany (March to June 2020) at the Department of Obstetrics and Gynecology, University of W{\"u}rzburg, Germany, were recruited at hospital admission for delivery. Biosamples were collected for analysis of SARS-CoV-2 infection and various stress hormones and interleukin-6 (IL-6). In addition to sociodemographic and medical obstetric data, survey questionnaires in relation to concerns about and fear of COVID-19, depression, stress, anxiety, loneliness, maternal self-efficacy and the mother-child bonding were administered at T1 (delivery stay) and T2 (3-6 months postpartum). Results In total, all 94 recruited patients had a moderate concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at T1 with a significant rise at T2. This concern correlated with low to low-medium general psychosocial stress levels and stress symptoms, and the women showed a significant increase of active coping from T1 to T2. Anxiety levels were low and the Edinburgh Postnatal Depression Scale showed a medium score of 5 with a significant (T1), but only week correlation with the concerns about SARS-CoV-2. In contrast to the overall good maternal bonding without correlation to SARS-CoV-2 concern, the maternal self-efficiency correlated negatively with the obstetric impairment caused by the COVID-19 pandemic. Conclusion Obstetric patients` concerns regarding SARS-CoV-2 and the accompanying pandemic increased during the course of the pandemic correlating positively with stress and depression. Of note is the increase in active coping over time and the overall good mother-child-bonding. Maternal self-efficacy was affected in part by the restrictions of the pandemic.}, language = {en} } @article{KlementChampOttoetal.2016, author = {Klement, Rainer J. and Champ, Colin E. and Otto, Christoph and K{\"a}mmerer, Ulrike}, title = {Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {5}, doi = {10.1371/journal.pone.0155050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167036}, pages = {e0155050}, year = {2016}, abstract = {Background Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. Methods We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ\(^{2}\) were MR = 0.85 (95\% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95\% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26\% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95\% HPDI = [0.76, 1.04]). Conclusions There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors.}, language = {en} } @article{KlementFrobelAlbersetal.2013, author = {Klement, Rainer Johannes and Frobel, Thomas and Albers, Torsten and Fikenzer, Sven and Prinzhausen, Jan and K{\"a}mmerer, Ulrike}, title = {A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78901}, year = {2013}, abstract = {Background: Ketogenic diets (KDs) have gained some popularity not only as effective weight-loss diets and treatment options for several diseases, but also among healthy and physically active individuals for various reasons. However, data on the effects of ketosis in the latter group of individuals are scarce. We therefore collected pilot data on the physiological response to a self-prescribed ketogenic diet lasting 5-7 weeks in a small cohort of healthy and physically active individuals. Methods: Twelve subjects (7 males, 5 females, age 24-60 years) who followed moderate to intensive exercise routines underwent blood testing, bioelectrical impedance analysis (BIA) and spiroergometry during an incremental treadmill test. On the next day, they went on a self-prescribed KD for a median of 38 days (range 35-50 days), after which the same tests were performed again. Ketosis was self-monitored by urinary ketone strips. Subjective feeling during the diet was assessed by a questionnaire after the intervention. Due to the small and heterogenous sample, the results are interpreted in the context of the already existing literature. Results: The KDs were tolerated well by the majority of individuals. Impaired recovery from exercise remained the most frequently reported side effect until the end of the study. Most blood parameters remained stable during the intervention. However, there were significant elevations of total and LDL cholesterol concentrations (p<0.01) and a trend towards increased HDL-cholesterol (p=0.05). The drastic reduction of carbohydrates had no statistically significant influence on running performance judged by the time to exhaustion, VO2max and respiratory compensation points. BIA measurements showed significant increases in phase angle (p=0.01) indicating improvements of body composition with an estimated decrease of 3.4 kg of fat mass (p=0.002) and gain of 1.3 kg of fat free mass. We discuss the validity of these estimates taking into account a possibly altered hydration status due to the KD. Conclusions: Active healthy individuals will probably experience no major problems during a short term KD lasting several weeks. The drastically reduced carbohydrate content of the diet seems to be no limiting factor for running performance. In addition, improvements in body composition can be expected. While most biochemical parameters are not influenced by the diet, there seems to be an impact on the blood lipid profile that could be considered problematic with respect to cardiovascular disease risk. However, the predictive role of cholesterol levels alone in individuals undergoing regular physical activity remains to be elucidated.}, subject = {Fettgehalt}, language = {en} } @article{KlementKaemmerer2011, author = {Klement, Rainer and K{\"a}mmerer, Ulrike}, title = {Is there a role for carbohydrate restriction in the treatment and prevention of cancer?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69178}, year = {2011}, abstract = {Over the last years, evidence has accumulated suggesting that by systematically reducing the amount of dietary carbohydrates (CHOs) one could suppress, or at least delay, the emergence of cancer, and that proliferation of already existing tumor cells could be slowed down. This hypothesis is supported by the association between modern chronic diseases like the metabolic syndrome and the risk of developing or dying from cancer. CHOs or glucose, to which more complex carbohydrates are ultimately digested, can have direct and indirect effects on tumor cell proliferation: first, contrary to normal cells, most malignant cells depend on steady glucose availability in the blood for their energy and biomass generating demands and are not able to metabolize significant amounts of fatty acids or ketone bodies due to mitochondrial dysfunction. Second, high insulin and insulin-like growth factor (IGF)-1 levels resulting from chronic ingestion of CHO-rich Western diet meals, can directly promote tumor cell proliferation via the insulin/IGF1 signaling pathway. Third, ketone bodies that are elevated when insulin and blood glucose levels are low, have been found to negatively affect proliferation of different malignant cells in vitro or not to be usable by tumor cells for metabolic demands, and a multitude of mouse models have shown antitumorigenic properties of very low CHO ketogenic diets. In addition, many cancer patients exhibit an altered glucose metabolism characterized by insulin resistance and may profit from an increased protein and fat intake. In this review, we address the possible beneficial effects of low CHO diets on cancer prevention and treatment. Emphasis will be placed on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.}, subject = {Medizin}, language = {en} } @article{KlingelhoefferKaemmererKoospaletal.2012, author = {Klingelhoeffer, Chr{\´i}stoph and K{\"a}mmerer, Ulrike and Koospal, Monika and M{\"u}hling, Bettina and Schneider, Manuela and Kapp, Michaela and K{\"u}bler, Alexander, and Germer, Christoph-Thomas and Otto, Christoph}, title = {Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75142}, year = {2012}, abstract = {Background: Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS) involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L). The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods: Effective concentration (EC50) values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50\%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA) in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results: The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50>20 mmol/L and fifty-five percent had an EC50<20 mmol/L. With an EC50 of 2.6-5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L), was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT) became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L). Conclusions: Fifty-five percent of the human cancer cell lines tested were unable to protect themselves against oxidative stress mediated by ascorbic acid induced hydrogen peroxide production. The antioxidative enzyme catalase is important to protect cancer cells against cytotoxic hydrogen peroxide. Silenced catalase expression increased the susceptibility of the formerly resistant cancer cell line BT-20 to oxidative stress.}, subject = {Medizin}, language = {en} } @article{KugerCoerekPolatetal.2014, author = {Kuger, Sebastian and C{\"o}rek, Emre and Polat, B{\"u}lent and K{\"a}mmerer, Ulrike and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions}, doi = {10.4137/BCBCR.S13693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112708}, year = {2014}, abstract = {In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were signifi-cantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment.}, language = {en} }