@phdthesis{Kraich2008, author = {Kraich, Michael}, title = {Strukturelle und funktionelle Untersuchungen der Interaktion zwischen Ligand und Rezeptor im Interleukin-4- und Interleukin-13-System}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27655}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Interleukin-4 (IL-4) und Interleukin-13 (IL-13) sind bedeutende Regulatorproteine des Immunsystems. Sie spielen eine entscheidende Rolle bei der Entstehung und dem Verlauf von allergischen Erkrankungen, wie z.B. Asthma. Um ihre Signale in die Zielzelle zu transduzieren, kann von beiden Zytokinen der gleiche Zelloberfl{\"a}chenrezeptor verwendet werden, wodurch sich die {\"u}berlappenden, biologischen Funktionen erkl{\"a}ren lassen. Dieser gemeinsam genutzte Rezeptor ist aus den beiden Untereinheiten IL-4Ralpha; und IL-13Ralpha1 aufgebaut. Da IL-4 und IL-13 auf Aminos{\"a}ureebene nur etwa 25\% Sequenzidentit{\"a}t besitzen und stark unterschiedliche Affinit{\"a}ten zu den beiden Rezeptorketten besitzen, stellt sich die Frage, durch welchen molekularen Erkennungsmechanismus, die Affinit{\"a}t und die Spezifit{\"a}t der Ligand-Rezeptor-Interaktion unabh{\"a}ngig voneinander reguliert werden kann. In dieser Arbeit gelang es, rekombinante Expressions- und Aufreinigungsstrategien f{\"u}r IL-13 und die extrazellul{\"a}ren Dom{\"a}nen der Rezeptorketten IL-13Ralpha1 und IL-13Ralpha2 zu entwickeln. Dadurch war es m{\"o}gliche, eine breite Mutations-/Interaktionsanalyse der IL-13Ralpha1-Kette durchzuf{\"u}hren.Es konnte gezeigt werden, dass die N-terminale FnIII-{\"a}hnliche Dom{\"a}ne von IL-13Ralpha1 sowohl an der Bindung von IL-13 als auch an der Interaktion mit IL-4 beteiligt ist. Im funktionellen Bindeepitop der IL-13Ralpha1-Kette wurden die Aminos{\"a}urereste Arg84, Phe253 und Tyr321 als Hauptbindungsdeterminanten f{\"u}r die Interaktion mit IL-13 identifiziert. Durch die Interaktionsstudien der IL-13Ralpha1-Varianten mit IL-4 wurde gezeigt, dass diese Hauptbindungsdeterminanten auch f{\"u}r die niederaffine Bindung von IL-4 von gr{\"o}ßter Bedeutung sind. Die funktionellen Bindeepitope f{\"u}r IL-4 und IL-13 auf der IL-13Ralpha1-Kette sind nahezu identisch und {\"u}berlappen in einem großen Bereich. Aufgrund der Ergebnisse aus der Mutagenesestudie war es m{\"o}glich, ein Strukturmodell der extrazellul{\"a}ren Dom{\"a}ne der IL-13Ralpha1-Kette zu erstellen. Darin wird eine neuartige Orientierung der N-terminalen FnIII-Dom{\"a}ne und deren Beteiligung an der Ligandeninteraktion dargestellt. Mit Hilfe des Strukturmodells gelang es, neue Aminos{\"a}urerest auf der Oberfl{\"a}che von IL-13 zu identifizieren, die an der Bindung zu IL-13Ralpha1 beteiligt sind, was die Relevanz des Strukturmodells weiter unterstreicht. In einem weiteren Teil dieser Arbeit wurde versucht, den molekularen Mechanismus aufzukl{\"a}ren, durch den es den superagonistischen IL-4-Varianten T13D und F82D gelingt, mit dreifach h{\"o}herer Affinit{\"a}t an die IL-4Ralpha-Kette zu binden, als wildtypischer Ligand. Durch strukturelle und funktionelle Untersuchungen wurde gezeigt, dass der Affinit{\"a}tssteigerung ein indirekter Mechanismus zugrunde liegt, bei dem eine Konformations{\"a}nderung und die Fixierung der Arg85-Seitenkette von IL-4 zur Ausbildung von zus{\"a}tzlichen Ligand-Rezeptor-Interaktionen f{\"u}hrt. Das Bindeepitop zwischen IL-4 und der IL-4Ralpha-Kette besitzt eine modulare Architektur aus drei unabh{\"a}ngig voneinander agierenden Interaktionsclustern. Bei der Interaktion von wildtypischem IL-4 mit IL-4Ralpha tragen nur zwei dieser Cluster in signifikanter Weise zur freien Bindeenergie bei. Im Falle der superagonistischen IL-4-Varianten ist jedoch auch das dritte Cluster an der Generierung von zus{\"a}tzlicher, freier Bindeenergie beteiligt, wodurch die Affinit{\"a}t zwischen Ligand und Rezeptor erh{\"o}ht wird. Damit stellt der modulare Aufbau der Interaktionsfl{\"a}che zwischen IL-4 und der IL-4Ralpha-Kette m{\"o}glicherweise einen Mechanismus dar, {\"u}ber den Proteine die Affinit{\"a}t von Wechselwirkungen {\"u}ber einen großen Bereicht variieren k{\"o}nnen, ohne dabei Spezifit{\"a}t einzub{\"u}ssen. Da IL-4 und IL-13 als interessante Zielmolek{\"u}le f{\"u}r die Therapie von allergischen und asthmatischen Erkrankungen erkannt worden sind, k{\"o}nnen die in der vorliegenden Arbeit gewonnenen Informationen {\"u}ber den Bindemechanismus und die Einblicke in den molekularen Charakter der Interaktion zwischen den beiden Zytokinen und ihren spezifischen Rezeptorketten dabei helfen, neuartige und hoch spezifische, inhibitorische Molek{\"u}le zu entwickeln.}, subject = {Renaturierung }, language = {de} } @phdthesis{Schaafhausen2011, author = {Schaafhausen, Anne}, title = {Proteininteraktionen der Vitamin K Epoxid Reduktase Proteine VKORC1 und VKORC1L1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55442}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Seit der Entdeckung des ersten Gens f{\"u}r den Vitamin K Epoxid-Reduktase-Komplex (VKORC1), dem Schl{\"u}ssel-Enzym f{\"u}r die Regenerierung von Vitamin K, sind keine zus{\"a}tzlichen Komponenten des Komplexes beschrieben worden. Die einzige bekannte Funktion von VKORC1 ist bislang die Reduktion von Vitamin K-2,3-Epoxid, welches bei der post-translationalen Carboxylierung von Proteinen als oxidierter Kofaktor anf{\"a}llt, und im sogenannten Vitamin K-Zyklus regeneriert wird. VKORC1 ist zugleich das Zielprotein antikoagulativer Medikamente der Coumarin-Gruppe, wie Warfarin oder Marcumar. Mutationen im VKORC1-Gen f{\"u}hren zu einem signifikanten Effekt auf die ben{\"o}tigte Coumarin-Dosis und die Stabilit{\"a}t der H{\"a}mostase in der Thrombosebehandlung mit Antikoagulanzien. Gleichzeitig mit VKORC1 wurde ein stark sequenz-homologes Protein identifiziert, das „VKORC1-like1" (VKORC1L1) genannt wurde und dessen physiologische Funktion zu Beginn dieser Arbeit v{\"o}llig unbekannt war. Die vorliegende Arbeit besch{\"a}ftigte sich mit zwei Aspekten des Vitamin K-Stoffwechsels: A. Den enzym-kinetischen Eigenschaften und der subzellul{\"a}ren Lokalisation des VKORC1L1-Proteins sowie B. der Identifizierung und Charakterisierung von Proteinen, die Interaktionspartner der beiden VKOR-Proteine sein k{\"o}nnen. Die Ergebnisse k{\"o}nnen wie folgt zusammengefasst werden: A.1. Die enzym-kinetischen Untersuchungen zeigen starke {\"A}hnlichkeiten zwischen VKORC1 und VKORC1L1: Beide Enzyme haben eine Vitamin K-Epoxidase- und -Reduktase-Aktivit{\"a}t, wobei die Affinit{\"a}ten zu Vitamin K2-Epoxid deutlich h{\"o}her sind als die zu Vitamin K1-Epoxid. Beide Enzyme sind durch Warfarin hemmbar und der Austausch der vermutlich am Elektronentransfer beteiligten Cysteine an homologen Positionen f{\"u}hrt in beiden Proteinen zu einem fast vollst{\"a}ndigen Verlust der Aktivit{\"a}t. A.2. Mittels Ko-Lokalisation konnte VKORC1L1 - wie VKORC1 - in der ER-Membran lokalisiert werden. Folglich schließen wir, dass VKORC1L1 eine {\"a}hnliche Struktur, die gleiche zellul{\"a}re Lokalisation und zumindest in vitro auch eine VKOR-Aktivit{\"a}t hat und daher eventuell eine weitere Komponente des VKOR-Komplexes darstellen k{\"o}nnte. Allerdings sprechen gewichtige Argumente dagegen, dass beide Proteine funktionell austauschbar sind: Sowohl bei Patienten mit Mutationen in VKORC1 (VKCDF2-Erkrankung), als auch bei VKORC1-Knock-out M{\"a}usen kann das intaktes VKORC1L1-Protein die inaktivierende Mutation im C1-Gen nicht kompensieren. B.1. Mit einem f{\"u}r Membranproteine adaptierten, modifizierten Yeast-Two-Hybrid Screen (Split-Ubiquitin-System) konnten mit VKORC1 und VKORC1L1 als K{\"o}der 114 Proteine aus einer Leber-cDNA-Bank als potentielle Interaktionspartner identifiziert werden. Davon wurden 6 Proteine aufgrund ihrer Trefferh{\"a}ufigkeit und funktioneller {\"U}berlegungen mit Hilfe von Ko-Immunpr{\"a}zipitationsexperimenten und Ko-Immunlokalisation n{\"a}her untersucht. Interessanterweise zeigen die beiden Trefferlisten starke {\"U}berschneidungen. B.2. Es konnte eine in vitro- Interaktion von VKORC1 mit sich selbst und mit VKORC1L1 nachgewiesen werden, die bisher nicht bekannt war. Dies k{\"o}nnte auf der hohen Sequenz- und Struktur-Homologie der beiden Proteine beruhen, f{\"u}hrt aber auch zu neuen Hypothesen bez{\"u}glich des Vitamin K-Stoffwechsels. B.3. Die Interaktion von VKORC1 und dem „stress-associated endoplasmic reticulum protein 1" (SERP1) bringt Vitamin K in Zusammenhang mit oxidativem Stress. Dazu passen auch die neuesten Ergebnisse aus der Arbeitsgruppe von Johannes Oldenburg (vormals W{\"u}rzburg, jetzt Bonn) zur Funktion von VKORC1L1, die eine protektive Rolle von Vitamin K beim Schutz der Zelle vor reaktiven Sauerstoffverbindungen nahe legen. Ob und wie Vitamin K und VKORC1L1 einen neuen Schutzmechanismus gegen Sauerstoffradikale bilden bedarf weiterer Untersuchungen. B.4. Ferner wurde eine Interaktion zwischen VKORC1 und dem „Emopamil-binding-protein" (EBP) nachgewiesen. Mutationen in EBP f{\"u}hren zu der seltenen genetischen Krankheit Chondrodysplasia punctata. Die {\"A}hnlichkeit der Symptomatik zwischen Chondrodysplasia punctata und der sogenannten Warfarin-Embryopathie, die durch {\"u}berh{\"o}hte Dosierung von Coumarinen w{\"a}hrend der Schwangerschaft verursacht wird, legt einen Zusammenhang zwischen Vitamin K- und dem Kalziumstoffwechsel nahe. B5. In den Ko-Immunpr{\"a}zipitationsexperimenten nicht best{\"a}tigt haben sich die initial positiven Proteine Protein-Disulfid-Isomerase (PDIA6), CD63, und Fibrinogen-Gamma (FGG). Die Ergebnisse geben Hinweise auf neue Funktionen der VKOR-Proteine beim Schutz vor oxidativem Stress und in der Verbindung zum Kalzium-Stoffwechsel. Beide Aspekte bed{\"u}rfen weiterf{\"u}hrender Untersuchungen. Im Hinblick auf diese neuen Funktionen w{\"a}re auch eine kritische Betrachtung der {\"u}brigen 85 prim{\"a}ren Treffer des Split-Ubiquitin-Screens sinnvoll.}, subject = {Vitamin-K-Gruppe}, language = {de} }