@phdthesis{Anany2019, author = {Anany, Mohamed Ahmed Mohamed Mohamed}, title = {Enhancement of Toll-like receptor3 (TLR3)-induced death signaling by TNF-like weak inducer of apoptosis (TWEAK)}, doi = {10.25972/OPUS-18975}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily (TNFSF) and is as such initially expressed as type II class transmembrane glycoprotein from which a soluble ligand form can be released by proteolytic processing. While the expression of TWEAK has been detected at the mRNA level in various cell lines and cell types, its cell surface expression has so far only been documented for dendritic cells, monocytes and interferon-γ stimulated NK cells. The fibroblast growth factor-inducible-14 (Fn14) is a TRAF2-interacting receptor of the TNF receptor superfamily (TNFRSF) and is the only receptor for TWEAK. The expression of Fn14 is strongly induced in a variety of non-hematopoietic cell types after tissue injury. The TWEAK/Fn14 system induces pleiotropic cellular activities such as induction of proinflammatory genes, stimulation of cellular angiogenesis, proliferation, differentiation, migration and in rare cases induction of apoptosis. On the other side, Toll-like receptor3 (TLR3) is one of DNA- and RNA-sensing pattern recognition receptors (PRRs), plays a crucial role in the first line of defense against virus and invading foreign pathogens and cancer cells. Polyinosinic-polycytidylic acid poly(I:C) is a synthetic analog of dsRNA, binds to TLR3 which acts through the adapter TRIF/TICAM1, leading to cytokine secretion, NF-B activation, IRF3 nuclear translocation, inflammatory response and may also elicit the cell death. TWEAK sensitizes cells for TNFR1-induced apoptosis and necroptosis by limiting the availability of protective TRAF2-cIAP1 and TRAF2-cIAP2 complexes, which interact with the TNFR1-binding proteins TRADD and RIPK1. In accordance with the fact that poly(I:C)-induced signaling also involves these proteins, we found enhanced necroptosis-induction in HaCaT and HeLa-RIPK3 by poly(I:C) in the presence of TWEAK (Figure 24). Analysis of a panel of TRADD, FADD, RIPK1 and caspase-8 knockout cells revealed furthermore similarities and differences in the way how these molecules act in cell death signaling by poly(I:C)/TWEAK and TNF and TRAIL. RIPK1 turned out to be essential for poly(I:C)/TWEAK-induced caspase-8-mediated apoptosis but was dispensable for these responses in TNF and TRAIL signaling. Lack of FADD protein abrogated TRAIL- but not TNF- and poly(I:C)-induced necroptosis. Moreover, we observed that both long and short FLIP rescued HaCaT and HeLa-RIPK3 cells from poly(I:C)-induced apoptosis or necroptosis. To sum up, our results demonstrate that TWEAK, which is produced by interferon stimulated myeloid cells, controls the induction of apoptosis and necroptosis by the TLR3 ligand poly(I:C) and may thus contribute to cancer or anti-viral immunity treatment.}, subject = {Immunologe}, language = {en} } @phdthesis{Krenz2023, author = {Krenz, Bastian}, title = {The immune-evasive potential of MYC in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-32590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Pancreatic ductal adenocarcinoma (PDAC) is predominantly driven by mutations in KRAS and TP53. However, PDAC tumors display deregulated levels of MYC and are a paradigm example for MYC-driven and -addicted tumors. For many years MYC was described as a transcription factor that regulates a pleiotropic number of genes to drive proliferation. Recent work sheds a different light on MYC biology. First, changes in gene expression that come along with the activation of MYC are mild and MYC seems to act more as a factor that reduces stress and increases resilience towards challenges during transcription. Second, MYC is a strong driver of immune evasion in different entities. In this study we depleted MYC in murine PDAC cells and revealed the immune dependent regression of tumors in an orthotope transplant model, as well as the activation of the innate immune system using global expression analysis, immunoblotting and fCLIP. These experiments revealed that endogenous double-stranded RNA is binding as a viral mimicry to Toll-like receptor 3, causing activation of TBK1 and downstream activation of a proimmunogenic transcription program. The regression of tumors upon depletion of MYC is dependent on this pathway since the knockout of TBK1 prevents regression of tumors after depletion of MYC. We can summarize this study in three main findings: First, the dominant and most important function of MYC in tumors is not to drive proliferation but to promote immune evasion and prevent immune-dependent regression of tumors. Second, cells monitor defects or delay in splicing and RNA processing and activate the immune system to clear cells that face problems with co-transcriptional processing. Third, MYC suppresses the activation of the cell-intrinsic innate immune system and shields highly proliferating cells from the recognition by the immune system. To translate this into a therapeutically approach, we replaced the shRNA mediated depletion of MYC by treatment with cardiac glycosides. Upon treatment with cardiac glycosides tumor cells reduce uptake of nutrients, causing a downregulation of MYC translation, inhibition of proliferation, glycolysis and lactate secretion. Lactate is a major reason for immune evasion in solid tumors since it dampens, amongst others, cytotoxic T cells and promotes regulatory T cells. Treatment of mice with cardiac glycosides causes a complete and immune-dependent remission of PDAC tumors in vivo, pointing out that cardiac glycosides have strong proimmunogenic, anti-cancer effects. More detailed analyses will be needed to dissect the full mechanism how cardiac glycosides act on MYC translation and immune evasion in PDAC tumors.}, subject = {Bauchspeicheldr{\"u}senkrebs}, language = {en} }