@article{SalvadorKoepplHoermannetal.2023, author = {Salvador, Ellaine and K{\"o}ppl, Theresa and H{\"o}rmann, Julia and Sch{\"o}nh{\"a}rl, Sebastian and Bugaeva, Polina and Kessler, Almuth F. and Burek, Malgorzata and Ernestus, Ralf-Ingo and L{\"o}hr, Mario and Hagemann, Carsten}, title = {Tumor Treating Fields (TTFields) induce cell junction alterations in a human 3D in vitro model of the blood-brain barrier}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {1}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15010185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304830}, year = {2023}, abstract = {In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood-brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.}, language = {en} }