@article{LoefflerWirthKreuzHoppetal.2019, author = {Loeffler-Wirth, Henry and Kreuz, Markus and Hopp, Lydia and Arakelyan, Arsen and Haake, Andrea and Cogliatti, Sergio B. and Feller, Alfred C. and Hansmann, Martin-Leo and Lenze, Dido and M{\"o}ller, Peter and M{\"u}ller-Hermelink, Hans Konrad and Fortenbacher, Erik and Willscher, Edith and Ott, German and Rosenwald, Andreas and Pott, Christiane and Schwaenen, Carsten and Trautmann, Heiko and Wessendorf, Swen and Stein, Harald and Szczepanowski, Monika and Tr{\"u}mper, Lorenz and Hummel, Michael and Klapper, Wolfram and Siebert, Reiner and Loeffler, Markus and Binder, Hans}, title = {A modular transcriptome map of mature B cell lymphomas}, series = {Genome Medicine}, volume = {11}, journal = {Genome Medicine}, doi = {10.1186/s13073-019-0637-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237262}, year = {2019}, abstract = {Background Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt's lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma. Methods We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and clinical characteristics. Results We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that of Burkitt's lymphoma and particularly on 'double-hit' MYC and BCL2 transformed lymphomas. Conclusions The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and future studies on lymphomas and on other cancer entities.}, language = {en} } @article{MarquardtSolimandoKerscheretal.2021, author = {Marquardt, Andr{\´e} and Solimando, Antonio Giovanni and Kerscher, Alexander and Bittrich, Max and Kalogirou, Charis and K{\"u}bler, Hubert and Rosenwald, Andreas and Bargou, Ralf and Kollmannsberger, Philip and Schilling, Bastian and Meierjohann, Svenja and Krebs, Markus}, title = {Subgroup-Independent Mapping of Renal Cell Carcinoma — Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries}, series = {Frontiers in Oncology}, volume = {11}, journal = {Frontiers in Oncology}, issn = {2234-943X}, doi = {10.3389/fonc.2021.621278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232107}, year = {2021}, abstract = {Background: Renal cell carcinoma (RCC) is divided into three major histopathologic groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. Materials and Methods: We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Results: Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin (mixed subgroup)—demonstrating divergence between histopathology and transcriptomic data. Further analyses of mixed subgroup via machine learning revealed a predominant mitochondrial gene signature—a trait previously known for chRCC—across all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, mixed subgroup affiliation was associated with a highly significant shorter overall survival for patients with ccRCC—and a highly significant longer overall survival for chRCC patients. Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed subgroup went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment.}, language = {en} }