@article{HuflageGrunzPatzeretal.2023, author = {Huflage, Henner and Grunz, Jan-Peter and Patzer, Theresa Sophie and Pannenbecker, Pauline and Feldle, Philipp and Sauer, Stephanie Tina and Petritsch, Bernhard and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Kunz, Andreas Steven}, title = {Potential of unenhanced ultra-low-dose abdominal photon-counting CT with tin filtration: a cadaveric study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics13040603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304122}, year = {2023}, abstract = {Objectives: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. Materials and Methods: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. Results: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95\% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. Conclusions: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.}, language = {en} } @article{ConradsGrunzHuflageetal.2023, author = {Conrads, Nora and Grunz, Jan-Peter and Huflage, Henner and Luetkens, Karsten Sebastian and Feldle, Philipp and Grunz, Katharina and K{\"o}hler, Stefan and Westermaier, Thomas}, title = {Accuracy of pedicle screw placement using neuronavigation based on intraoperative 3D rotational fluoroscopy in the thoracic and lumbar spine}, series = {Archives of Orthopaedic and Trauma Surgery}, volume = {143}, journal = {Archives of Orthopaedic and Trauma Surgery}, number = {6}, doi = {10.1007/s00402-022-04514-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324966}, pages = {3007-3013}, year = {2023}, abstract = {Introduction In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities. Materials and methods Posterior instrumentation procedures between 2010 and 2015 were retrospectively analyzed. Pedicle screws were placed using 3D rotational fluoroscopy and neuronavigation. Accuracy of screw placement was assessed using a 6-grade scoring system. In addition, screw length was analyzed in relation to the vertebral body diameter. Intra- and postoperative revision rates were recorded. Results Thoracic and lumbar spine surgery was performed in 285 patients. Of 1704 pedicle screws, 1621 (95.1\%) showed excellent positioning in 3D rotational fluoroscopy imaging. The lateral rim of either pedicle or vertebral body was protruded in 25 (1.5\%) and 28 screws (1.6\%), while the midline of the vertebral body was crossed in 8 screws (0.5\%). Furthermore, 11 screws each (0.6\%) fulfilled the criteria of full lateral and medial displacement. The median relative screw length was 92.6\%. Intraoperative revision resulted in excellent positioning in 58 of 71 screws. Follow-up surgery due to missed primary malposition had to be performed for two screws in the same patient. Postsurgical symptom relief was reported in 82.1\% of patients, whereas neurological deterioration occurred in 8.9\% of cases with neurological follow-up. Conclusions Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required.}, language = {en} }