@article{StiebKelberWehneretal.2011, author = {Stieb, Sara Mae and Kelber, Christina and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis}, series = {Brain, Behavior and Evolution}, volume = {77}, journal = {Brain, Behavior and Evolution}, number = {3}, issn = {0006-8977}, doi = {10.1159/000326211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196815}, pages = {136-146}, year = {2011}, abstract = {Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198-249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica - a genus closely related to Cataglyphis - revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system.}, language = {en} } @article{HurdGruebelWojciechowskietal.2021, author = {Hurd, Paul J. and Gr{\"u}bel, Kornelia and Wojciechowski, Marek and Maleszka, Ryszard and R{\"o}ssler, Wolfgang}, title = {Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-86078-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260059}, pages = {6852}, year = {2021}, abstract = {In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.}, language = {en} }