@article{TruongvanLiMisraetal.2022, author = {Truongvan, Ngoc and Li, Shurong and Misra, Mohit and Kuhn, Monika and Schindelin, Hermann}, title = {Structures of UBA6 explain its dual specificity for ubiquitin and FAT10}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, doi = {10.1038/s41467-022-32040-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301161}, year = {2022}, abstract = {The covalent modification of target proteins with ubiquitin or ubiquitin-like modifiers is initiated by E1 activating enzymes, which typically transfer a single modifier onto cognate conjugating enzymes. UBA6 is an unusual E1 since it activates two highly distinct modifiers, ubiquitin and FAT10. Here, we report crystal structures of UBA6 in complex with either ATP or FAT10. In the UBA6-FAT10 complex, the C-terminal domain of FAT10 binds to where ubiquitin resides in the UBA1-ubiquitin complex, however, a switch element ensures the alternate recruitment of either modifier. Simultaneously, the N-terminal domain of FAT10 interacts with the 3-helix bundle of UBA6. Site-directed mutagenesis identifies residues permitting the selective activation of either ubiquitin or FAT10. These results pave the way for studies investigating the activation of either modifier by UBA6 in physiological and pathophysiological settings.}, language = {en} } @phdthesis{Truongvan2023, author = {Truongvan, Ngoc}, title = {Understanding the dual specificity of UBA6}, doi = {10.25972/OPUS-24457}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244579}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Ubiquitylation is a protein post translational modification, in which ubiquitin is covalently attached to target protein substrates resulting in diverse cellular outcomes. Besides ubiquitin, various ubiquitin-like proteins including FAT10 exist, which are also conjugated to target proteins. The underlying modification mechanisms are conserved. In the initial step, ubiquitin or a ubiquitin-like protein is thioester-linked to a catalytic cysteine in the E1activating enzyme in an ATP-dependent manner. The respective protein modifier is then transferred to an E2 conjugating enzyme in a transthioesterification reaction. Finally, an E3 ubiquitin ligase E3 catalyzes the covalent attachment of the protein modifier to a substrate. In the case of ubiquitin, multiple ubiquitin molecules can be attached to a substrate in the form of either linear or branched polyubiquitin chains but also as single ubiquitin modifications. Depending on the nature of the ubiquitin chain, the substrates are destined to various cellular processes such as their targeted destruction by the proteasome but also non-degradative outcomes may occur. As stated above FAT10 is a ubiquitin-like protein modifier which typically targets proteins for proteasomal degradation. It consists of two ubiquitin-like domains and is mainly expressed in cells of the human immune system. The reported involvement of FAT10 modifications in cancers and other diseases has caught the attention of the scientific community as an inhibition of the FAT10ylation process may provide avenues for novel therapeutic approaches. UBA6 is the E1 activating enzyme that resides at the apex of the FAT10 proteasomal degradation pathway. UBA6 not only recognizes FAT10 but can also activate ubiquitin as efficiently as the ubiquitin specific E1 UBA1. The dual specificity of UBA6 may complicate the inhibition FAT10ylation since targeting the active site of UBA6 will also inhibit the UBA6-catalyzed ubiquitin activation. Therefore, it is important to understand the underlying principles for the dual specificity of UBA6 prior to the development of compounds interfering with FAT10ylation. In this thesis important novel insights into the structure and function of UBA6 were derived by X-ray crystallography and biochemical methods. The first crystal structure of UBA6 reveals the multidomain architecture of this enzyme in atomic detail. The enzyme is composed of a rigid core including its active and inactive adenylation domains as well as a 4 helix bundle. Overall, the molecule adopts a "Y" shape architecture with the core at the base and the first and second catalytic half domains forming one arm of the "Y" and the ubiquitin fold domain constituting the other arm. While UBA6 shares the same domain architecture as UBA1, substantial differences were revealed by the crystal structure. In particular, the first catalytic half domain undergoes a significant shift to a position more distal from the core. This rigid body movement is assumed to generate room to accommodate the second ubiquitin-like domain of FAT10. Differences are also observed in a hydrophobic platform between the core and the first catalytic half domain and the adenylation active site in the core, which together from the binding sites for ubiquitin and FAT10. Site directed mutagenesis of key residues in these areas altered the UBA6-catalyzed activation of ubiquitin and FAT10. UBA6 variants were generated with the goal of trying to block the activation of FAT10 while still maintaining that of ubiquitin activation, in order to fully explain the dual specificity of UBA6. However, none of these mutations could block the activation of FAT10, while some of these UBA6 variants blocked ubiquitin activation. Preliminary inhibition assays with a group of E1 inhibitors belonging to the adenosyl sulfamate family demonstrated potent inhibition of FAT10ylation for two compounds. The dual specificity of UBA6 hence needs to be further examined by biochemical and structural methods. In particular, the structure of a complex between UBA6 and ubiquitin or FAT10 would provide key insights for further biochemical studies, ultimately allowing the targeted inhibition of the FAT10ylation machinery.}, language = {en} }