@phdthesis{Lang2015, author = {Lang, Melanie}, title = {Valence Shell Photoionization of Soot Precursors with Synchrotron Radiation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117038}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {A series of combustion relevant species like radicals, carbenes and polycyclic aromatic hydrocarbons were characterized in the gas phase by vacuum UV synchrotron radiation and their ionization energies (IE) and further spectroscopic details of the respective cations were retrieved from threshold photoelectron spectra. The reactive intermediates were generated by flash vacuum pyrolysis from stable precursor molecules. Furthermore three polycyclic aromatic hydrocarbons were investigated by threshold photoelectron spectroscopy, too. The experiment was performed at the VUV beamline of the Swiss Light Source in Villigen/Switzerland and the iPEPICO (imaging photoelectron photoion coincidence) setup was applied to correlate ions and electrons from the same ionization event. From the threshold photoelectron spectra and from quantum chemical computations the vibrational structure of the molecule cations and the geometry changes upon ionization were assigned. The ionization energies of the two C4H5 isomers 2-butyn-1-yl and 1-butyn-3-yl were assigned to 7.94±0.02 eV and 7.97±0.02 eV, respectively. The isomerization between the two isomers was computed to have a barrier of 2.20 eV, so a rearrangement between the two radicals cannot be excluded. From the threshold photoelectron spectra of the two constitutional C4H7 isomers 1-methylallyl and 2-methylallyl the ionization energies were assigned to 7.48±0.02 eV and to 7.59±0.02 eV for 1-E-methylallyl and 1-Z-methylallyl, as well as to 7.88±0.01 eV for 2-methylallyl. The two radicals 9-fluorenyl, C13H9, and benzhydryl, C13H11, were observed to ionize at 7.01±0.02 eV and 6.7 eV. The threshold photoelectron spectrum of benzhydryl also incorporated the signal of the diphenylmethyl carbene, C13H10, which has an IE at 6.8 eV. In addition, the head-to-head dimers of 9-fluorenyl and benzhydryl were observed as products in the pyrolysis. C26H18 has an IE at 7.69±0.04 eV and C26H22 has an IE at 8.13±0.04 eV. The three polycyclic aromatic hydrocarbon DHP (C14H16) 1-PEN (C18H22) and THCT (C22H16) were investigated in an effusive beam. The ionization energies were determined to IE(DHP)= 7.38±0.02 eV, IE(1-PEN)=7.58±0.05 eV and IE(THCT)=6.40±0.02 eV. Furthermore the thermal decomposition and the dissociative photoionization of diazomeldrum's acid was investigated. The pyrolysis products yielded beside several other products the two not yet (by photoelectron spectroscopy) characterized molecules E-formylketene, C3O2H2 and 2-diazoethenone, N2C2O. The dissociative photoionization showed the Wolff rearrangement to occur at higher internal energies.}, subject = {Ultraviolett-Photoelektronenspektroskopie}, language = {en} }