@article{Zonneveld2019, author = {Zonneveld, Ben J. M.}, title = {The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks}, series = {Forum Geobotanicum}, volume = {8}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2019.1022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189724}, pages = {24-78}, year = {2019}, abstract = {Besides external characteristics and reading a piece of DNA (barcode), the DNA weight per nucleus (genome size) via flow cytometry is a key value to detect species and hybrids and determine ploidy. In addition, the DNA weight appears to be related to various properties, such as the size of the cell and the nucleus, the duration of mitosis and meiosis and the generation time. Sometimes it is even possible to distinguish between groups or sections, which can lead to new classification of the genera. The variation in DNA weight is also useful to analyze biodiversity, genome evolution and relationships between related taxa. Moreover, it is important to know how large a genome is before one determines the base sequence of the DNA of a plant. Flow cytometry is also important for understanding fundamental processes in plants such as growth and development and recognizing chimeras. In the literature, DNA weight measurements are usually limited to one genus and often only locally (Siljak et al. 2010; Bai et al. 2012). In this study, however, it was decided to investigate all vascular plants from one country. This can also contribute to the protection of rare plants. This study is the first flora in the world whose weight of DNA per nucleus and peak patterns has been determined. More than 6400 plants, representing more than 2350 (sub)species (more than 90\%) have been collected, thanks to the help of almost 100 volunteers of Floristisch Onderzoek Nederland (Floron). Multiple specimens of many species have therefore been measured, preferably from different populations, in some cases more than fifty. For 1370 species, these values were not previously published. Moreover, a good number of the remaining 45\% are new for The Netherlands. In principle, each species has a fixed weight of DNA per nucleus. It has also been found that, especially between the genera, there are strong differences in the number of peaks that determine the DNA weight, from one to five peaks. This indicates that in a plant or organ there are sometimes nuclei with multiples of its standard DNA weight (multiple ploidy levels). It is impossible to show graphs of more than 2350 species. Therefore, we have chosen to show the peak pattern in a new way in a short formula. Within most genera there are clear differences in the DNA weights per nucleus between the species, in some other genera the DNA weight is hardly variable. Based on about twenty genera that were previously measured completely in most cases ('t Hart et al. 2003: Veldkamp and Zonneveld 2011; Soes et al. 2012; Dirkse et al. 2014, 2015; Verloove et al. 2017; Zonneveld [et al.] 2000-2018), it can be noted that even if all species of a genus have the same number of chromosomes, there can still be a difference of up to three times in the weight of the DNA. Therefore, a twice larger DNA weight does not have to indicate four sets of chromosomes. Finally, this research has also found clues to examine further the current taxonomy of a number of species or genera.}, subject = {Pflanzen}, language = {en} } @article{ZahnleiterUebeEkicietal.2013, author = {Zahnleiter, Diana and Uebe, Steffen and Ekici, Arif B. and Hoyer, Juliane and Wiesener, Antje and Wieczorek, Dagmar and Kunstmann, Erdmute and Reis, Andr{\´e} and Doerr, Helmuth-Guenther and Rauch, Anita and Thiel, Christian T.}, title = {Rare Copy Number Variants Are a Common Cause of Short Stature}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {3}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1003365}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127645}, pages = {e1003365}, year = {2013}, abstract = {Human growth has an estimated heritability of about 80\%-90\%. Nevertheless, the underlying cause of shortness of stature remains unknown in the majority of individuals. Genome-wide association studies (GWAS) showed that both common single nucleotide polymorphisms and copy number variants (CNVs) contribute to height variation under a polygenic model, although explaining only a small fraction of overall genetic variability in the general population. Under the hypothesis that severe forms of growth retardation might also be caused by major gene effects, we searched for rare CNVs in 200 families, 92 sporadic and 108 familial, with idiopathic short stature compared to 820 control individuals. Although similar in number, patients had overall significantly larger CNVs \((p-value <1 x 10^{-7})\). In a gene-based analysis of all non-polymorphic CNVs >50 kb for gene function, tissue expression, and murine knock-out phenotypes, we identified 10 duplications and 10 deletions ranging in size from 109 kb to 14 Mb, of which 7 were de novo (p < 0.03) and 13 inherited from the likewise affected parent but absent in controls. Patients with these likely disease causing 20 CNVs were smaller than the remaining group (p < 0.01). Eleven (55\%) of these CNVs either overlapped with known microaberration syndromes associated with short stature or contained GWAS loci for height. Haploinsufficiency (HI) score and further expression profiling suggested dosage sensitivity of major growth-related genes at these loci. Overall 10\% of patients carried a disease-causing CNV indicating that, like in neurodevelopmental disorders, rare CNVs are a frequent cause of severe growth retardation.}, language = {en} } @article{SchmidtkeFindeissSharmaetal.2011, author = {Schmidtke, Cornelius and Findeiß, Sven and Sharma, Cynthia M. and Kuhfuss, Juliane and Hoffmann, Steve and Vogel, J{\"o}rg and Stadler, Peter F. and Bonas, Ulla}, title = {Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions}, series = {Nucleic Acids Research}, volume = {40}, journal = {Nucleic Acids Research}, number = {5}, doi = {10.1093/nar/gkr904}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131781}, pages = {2020 -- 2031}, year = {2011}, abstract = {The Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) is an important model to elucidate the mechanisms involved in the interaction with the host. To gain insight into the transcriptome of the Xcv strain 85-10, we took a differential RNA sequencing (dRNA-seq) approach. Using a novel method to automatically generate comprehensive transcription start site (TSS) maps we report 1421 putative TSSs in the Xcv genome. Genes in Xcv exhibit a poorly conserved -10 promoter element and no consensus Shine-Dalgarno sequence. Moreover, 14\% of all mRNAs are leaderless and 13\% of them have unusually long 5'-UTRs. Northern blot analyses confirmed 16 intergenic small RNAs and seven cis-encoded antisense RNAs in Xcv. Expression of eight intergenic transcripts was controlled by HrpG and HrpX, key regulators of the Xcv type III secretion system. More detailed characterization identified sX12 as a small RNA that controls virulence of Xcv by affecting the interaction of the pathogen and its host plants. The transcriptional landscape of Xcv is unexpectedly complex, featuring abundant antisense transcripts, alternative TSSs and clade-specific small RNAs.}, language = {en} } @article{ReynoldsCliffeFoerstneretal.2014, author = {Reynolds, David and Cliffe, Laura and F{\"o}rstner, Konrad U. and Hon, Chung-Chau and Siegel, T. Nicolai and Sabatini, Robert}, title = {Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei}, series = {Nucleic Acids Research}, volume = {42}, journal = {Nucleic Acids Research}, number = {15}, doi = {10.1093/nar/gku714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117863}, pages = {9717-9729}, year = {2014}, abstract = {Base J, beta-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase ( RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters.}, language = {en} } @article{MatosMachadoSchartletal.2015, author = {Matos, I and Machado, M. P. and Schartl, M. and Coelho, M. M.}, title = {Gene expression dosage regulation in an allopolyploid fish}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {3}, doi = {10.1371/journal.pone.0116309}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143565}, pages = {e0116309}, year = {2015}, abstract = {How allopolyploids are able not only to cope but profit from their condition is a question that remains elusive, but is of great importance within the context of successful allopolyploid evolution. One outstanding example of successful allopolyploidy is the endemic Iberian cyprinid Squalius alburnoides. Previously, based on the evaluation of a few genes, it was reported that the transcription levels between diploid and triploid S. alburnoides were similar. If this phenomenon occurs on a full genomic scale, a wide functional "diploidization'' could be related to the success of these polyploids. We generated RNA-seq data from whole juvenile fish and from adult livers, to perform the first comparative quantitative transcriptomic analysis between diploid and triploid individuals of a vertebrate allopolyploid. Together with an assay to estimate relative expression per cell, it was possible to infer the relative sizes of transcriptomes. This showed that diploid and triploid S. alburnoides hybrids have similar liver transcriptome sizes. This in turn made it valid to directly compare the S. alburnoides RNA-seq transcript data sets and obtain a profile of dosage responses across the S. alburnoides transcriptome. We found that 64\% of transcripts in juveniles' samples and 44\% in liver samples differed less than twofold between diploid and triploid hybrids (similar expression). Yet, respectively 29\% and 15\% of transcripts presented accurate dosage compensation (PAA/PA expression ratio of 1 instead of 1.5). Therefore, an exact functional diploidization of the triploid genome does not occur, but a significant down regulation of gene expression in triploids was observed. However, for those genes with similar expression levels between diploids and triploids, expression is not globally strictly proportional to gene dosage nor is it set to a perfect diploid level. This quantitative expression flexibility may be a strong contributor to overcome the genomic shock, and be an immediate evolutionary advantage of allopolyploids.}, language = {en} } @article{HurdGruebelWojciechowskietal.2021, author = {Hurd, Paul J. and Gr{\"u}bel, Kornelia and Wojciechowski, Marek and Maleszka, Ryszard and R{\"o}ssler, Wolfgang}, title = {Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, doi = {10.1038/s41598-021-86078-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260059}, pages = {6852}, year = {2021}, abstract = {In the course of a screen designed to produce antibodies (ABs) with affinity to proteins in the honey bee brain we found an interesting AB that detects a highly specific epitope predominantly in the nuclei of Kenyon cells (KCs). The observed staining pattern is unique, and its unfamiliarity indicates a novel previously unseen nuclear structure that does not colocalize with the cytoskeletal protein f-actin. A single rod-like assembly, 3.7-4.1 mu m long, is present in each nucleus of KCs in adult brains of worker bees and drones with the strongest immuno-labelling found in foraging bees. In brains of young queens, the labelling is more sporadic, and the rod-like structure appears to be shorter (similar to 2.1 mu m). No immunostaining is detectable in worker larvae. In pupal stage 5 during a peak of brain development only some occasional staining was identified. Although the cellular function of this unexpected structure has not been determined, the unusual distinctiveness of the revealed pattern suggests an unknown and potentially important protein assembly. One possibility is that this nuclear assembly is part of the KCs plasticity underlying the brain maturation in adult honey bees. Because no labelling with this AB is detectable in brains of the fly Drosophila melanogaster and the ant Camponotus floridanus, we tentatively named this antibody AmBNSab (Apis mellifera Brain Neurons Specific antibody). Here we report our results to make them accessible to a broader community and invite further research to unravel the biological role of this curious nuclear structure in the honey bee central brain.}, language = {en} } @article{GarciaMatosShenetal.2014, author = {Garcia, Tzintzuni I. and Matos, Isa and Shen, Yingjia and Pabuwal, Vagmita and Coelho, Maria Manuela and Wakamatsu, Yuko and Schartl, Manfred and Walter, Ronald B.}, title = {Novel Method for Analysis of Allele Specific Expression in Triploid Oryzias latipes Reveals Consistent Pattern of Allele Exclusion}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {6}, issn = {1932-6203}, doi = {10.1371/journal.pone.0100250}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116000}, pages = {e100250}, year = {2014}, abstract = {Assessing allele-specific gene expression (ASE) on a large scale continues to be a technically challenging problem. Certain biological phenomena, such as X chromosome inactivation and parental imprinting, affect ASE most drastically by completely shutting down the expression of a whole set of alleles. Other more subtle effects on ASE are likely to be much more complex and dependent on the genetic environment and are perhaps more important to understand since they may be responsible for a significant amount of biological diversity. Tools to assess ASE in a diploid biological system are becoming more reliable. Non-diploid systems are, however, not uncommon. In humans full or partial polyploid states are regularly found in both healthy (meiotic cells, polynucleated cell types) and diseased tissues (trisomies, non-disjunction events, cancerous tissues). In this work we have studied ASE in the medaka fish model system. We have developed a method for determining ASE in polyploid organisms from RNAseq data and we have implemented this method in a software tool set. As a biological model system we have used nuclear transplantation to experimentally produce artificial triploid medaka composed of three different haplomes. We measured ASE in RNA isolated from the livers of two adult, triploid medaka fish that showed a high degree of similarity. The majority of genes examined (82\%) shared expression more or less evenly among the three alleles in both triploids. The rest of the genes (18\%) displayed a wide range of ASE levels. Interestingly the majority of genes (78\%) displayed generally consistent ASE levels in both triploid individuals. A large contingent of these genes had the same allele entirely suppressed in both triploids. When viewed in a chromosomal context, it is revealed that these genes are from large sections of 4 chromosomes and may be indicative of some broad scale suppression of gene expression.}, language = {en} } @article{FaragFroehlerOexleetal.2013, author = {Farag, Heba Gamal and Froehler, Sebastian and Oexle, Konrad and Ravindran, Ethiraj and Schindler, Detlev and Staab, Timo and Huebner, Angela and Kraemer, Nadine and Chen, Wei and Kaindl, Angela M.}, title = {Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {178}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123505}, year = {2013}, abstract = {Background: Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disease with severe microcephaly at birth due to a pronounced reduction in brain volume and intellectual disability. Biallelic mutations in the WD repeat-containing protein 62 gene WDR62 are the genetic cause of MCPH2. However, the exact underlying pathomechanism of MCPH2 remains to be clarified. Methods/results: We characterized the clinical, radiological, and cellular features that add to the human MCPH2 phenotype. Exome sequencing followed by Sanger sequencing in a German family with two affected daughters with primary microcephaly revealed in the index patient the compound heterozygous mutations c. 1313G>A (p.R438H) / c.2864-2867delACAG (p.D955Afs*112) of WDR62, the second of which is novel. Radiological examination displayed small frontal lobes, corpus callosum hypoplasia, simplified hippocampal gyration, and cerebellar hypoplasia. We investigated the cellular phenotype in patient-derived lymphoblastoid cells and compared it with that of healthy female controls. WDR62 expression in the patient's immortalized lymphocytes was deranged, and mitotic spindle defects as well as abnormal centrosomal protein localization were apparent. Conclusion: We propose that a disruption of centrosome integrity and/or spindle organization may play an important role in the development of microcephaly in MCPH2.}, language = {en} } @article{BrehmKoziol2014, author = {Brehm, Klaus and Koziol, Uriel}, title = {On the importance of targeting parasite stem cells in anti-echinococcosis drug development}, series = {Parasite}, volume = {21}, journal = {Parasite}, issn = {1252-607X}, doi = {10.1051/parasite/2014070}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118030}, pages = {72}, year = {2014}, abstract = {The life-threatening diseases alveolar and cystic echinococcoses are caused by larvae of the tapeworms Echinococcus multilocularis and E. granulosus, respectively. In both cases, intermediate hosts, such as humans, are infected by oral uptake of oncosphere larvae, followed by asexual multiplication and almost unrestricted growth of the metacestode within host organs. Besides surgery, echinococcosis treatment relies on benzimidazole-based chemotherapy, directed against parasite beta-tubulin. However, since beta-tubulins are highly similar between cestodes and humans, benzimidazoles can only be applied at parasitostatic doses and are associated with adverse side effects. Mostly aiming at identifying alternative drug targets, the nuclear genome sequences of E. multilocularis and E. granulosus have recently been characterized, revealing a large number of druggable targets that are expressed by the metacestode. Furthermore, recent cell biological investigations have demonstrated that E. multilocularis employs pluripotent stem cells, called germinative cells, which are the only parasite cells capable of proliferation and which give rise to all differentiated cells. Hence, the germinative cells are the crucial cell type mediating proliferation of E. multilocularis, and most likely also E. granulosus, within host organs and should also be responsible for parasite recurrence upon discontinuation of chemotherapy. Interestingly, recent investigations have also indicated that germinative cells might be less sensitive to chemotherapy because they express a beta-tubulin isoform with limited affinity to benzimidazoles. In this article, we briefly review the recent findings concerning Echinococcus genomics and stem cell research and propose that future research into anti-echinococcosis drugs should also focus on the parasite's stem cell population.}, language = {en} } @article{BiscottiGerdolCanapaetal.2016, author = {Biscotti, Maria Assunta and Gerdol, Marco and Canapa, Adriana and Forconi, Mariko and Olmo, Ettore and Pallavicini, Alberto and Barucca, Marco and Schartl, Manfred}, title = {The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {21571}, doi = {10.1038/srep21571}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167753}, year = {2016}, abstract = {Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a "living fossil" status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution.}, language = {en} }