@phdthesis{Diebold2023, author = {Diebold, Mathias}, title = {Virtuelles Screening und Entwicklung selektiver Liganden des Aurora-A - MYCN Komplexes und computergest{\"u}tzte Methoden zur Analyse und Design von PROTACs}, doi = {10.25972/OPUS-31759}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317594}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Interaktion des onkogenen Transkriptionsfaktors MYCN mit der Ser/Thr Kinase Aurora-A verhindert dessen Abbau {\"u}ber das Ubiquitin Proteasomsystem indem die Rekrutierung des SCF FbxW7 Komplexes verhindert wird. Die Kinase nimmt mit der Bindung an MYCN eine aktive Konformation ein und erh{\"a}lt somit die F{\"a}higkeit zur Kinaseaktivit{\"a}t ohne die sonst notwendige Phosphorylierung von Thr288 oder die Anwesenheit eines Aktivators wie TPX2. Da hohe MYCN Konzentrationen Tumore wie Neuroblastome antreiben, ist die St{\"o}rung der Komplexbildung mit Aurora-A eine valide Strategie zur Entwicklung von Chemotherapeutika. Einige Inhibitoren von Aurora-A wie Alisertib (MLN8237) sind in der Lage, eine Konformations{\"a}nderung in der Kinase zu verursachen, die mit der Bindung von MYCN inkompatibel ist und auf diese Weise den Abbau des Transkriptionsfaktors induziert. Da Aurora-A wichtige Funktionen in der Mitose {\"u}bernimmt, k{\"o}nnte eine direkte Adressierung des Komplexes anstelle einer systemischen Inhibition der Kinase vielversprechender sein. Ziel des Projektes war die Identifizierung von Molek{\"u}len, die selektiv an das Interface des Aurora-A - MYCN Komplexes binden und weiter optimiert werden k{\"o}nnen, um einen gezielten Abbau des Transkriptionsfaktors {\"u}ber einen PROTAC Ansatz zu erm{\"o}glichen. Virtuelle Screenings und molekulardynamische Simulationen wurden durchgef{\"u}hrt, um kommerziell erh{\"a}ltliche Verbindungen zu identifizieren, welche mit einer Bindetasche des Komplexes interagieren, die nur zustande kommt, wenn beide Proteine miteinander interagieren. Aus einem ersten Set von zehn potentiellen Liganden wurde f{\"u}r vier eine selektive Interaktion mit dem Protein - Protein Komplex gegen{\"u}ber Aurora-A oder MYCN alleine in STD-NMR Experimenten best{\"a}tigt. Zwei der Hits besaßen ein identisches Grundger{\"u}st und wurden als Ausganspunkt f{\"u}r die Optimierung zu potenteren Liganden genutzt. Das Ger{\"u}st wurde fragmentweise vergr{\"o}ßert und in Richtung besserer in-silico Ergebnisse und Funktionalisierung zur Anbringung von E3-Ligase-Liganden optimiert. Neun dieser Liganden der zweiten Generation wurden synthetisiert. Um quantitative Bindungsdaten zu erhalten, wurde ein kovalent verkn{\"u}pftes Aurora-A - MYCN Konstrukt entworfen. Die strukturelle und funktionale Integrit{\"a}t wurde in STD-NMR und BLI Experimenten mit bekannten Aurora-A Inhibitoren best{\"a}tigt, sowie in NMR-basierten ATPase Assays. Zus{\"a}tzlich konnte die Kristallstruktur des Konstrukts gel{\"o}st und damit die Validit{\"a}t des Designs best{\"a}tigt werden. Quantitative Messungen der synthetisierten Molek{\"u}le identifizierten HD19S als Hit mit einer zehnfach h{\"o}heren Affinit{\"a}t f{\"u}r das Aurora-A - MYCN Konstrukt im Vergleich zu der Kinase allein. Zus{\"a}tzlich wurden in-silico Untersuchungen zu PROTACs der Aurora-A Kinase durchgef{\"u}hrt. Interaktionen zwischen Aurora-A, der E3-Ligase Cereblon und den Liganden wurden modelliert und f{\"u}r die Erkl{\"a}rung unterschiedlicher Aktivit{\"a}ten der eingesetzten PROTACs verwendet. Zudem zeigte das aktivste PROTAC eine hohe Selektivit{\"a}t f{\"u}r Aurora-A gegen{\"u}ber Aurora-B, obwohl die verwendete Erkennungseinheit (Alisertib) an beide Aurora-Proteine bindet. Dieser Umstand konnte durch energetische Analysen von molekulardynamischen Simulationen der tern{\"a}ren Komplexe erkl{\"a}rt werden. Optimierungsm{\"o}glichkeiten f{\"u}r eine effizientere Degradation von Aurora-A durch die PROTACs wurden basierend auf modifizierten Erkennungseinheiten und verbesserten Linkern untersucht.}, subject = {Arzneimitteldesign}, language = {de} } @phdthesis{Bothe2021, author = {Bothe, Sebastian Helmut}, title = {Fragmentbasiertes Design von p97-Liganden: Identifizierung von Startstrukturen zur Entwicklung von Protein-Protein-Interaktionsinhibitoren f{\"u}r die SHP-Bindestelle der AAA+ ATPase p97}, doi = {10.25972/OPUS-23911}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239112}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Die AAA+ ATPase p97 ist ein essenzielles Protein, das an einer Vielzahl zellul{\"a}rer Prozesse beteiligt ist und eine Schl{\"u}sselrolle in der Protein-Hom{\"o}ostase spielt. Die funktionale Diversit{\"a}t von p97 beruht auf der Interaktion zahlreicher unterschiedlicher Kofaktoren, die vorwiegend an die N-Dom{\"a}ne von p97 binden. Aufgrund seiner Bedeutung in der Regulierung diverser physiologischer und pathologischer Prozesse stellt p97 eine interessante Zielstruktur f{\"u}r die Entwicklung neuer Wirkstoffe dar, die insbesondere in der Krebstherapie von Bedeutung sein k{\"o}nnte. Bekannte p97-Inhibitoren greifen vor allem die ATPase-Funktion des Proteins an. Ein neuer pharmakologischer Ansatz stellt die Inhibierung der Kofaktorbindung an die N-Dom{\"a}ne dar. Ein solcher Protein-Protein-Interaktionsinhibitor w{\"a}re nicht nur von therapeutischem Interesse, sondern h{\"a}tte auch einen besonderen Nutzen f{\"u}r die Entschl{\"u}sselung molekularer und zellul{\"a}rer Funktionen von p97-Kofaktoren. In dieser Arbeit wurde ein fragmentbasierter Ansatz f{\"u}r die Identifizierung von chemischen Startstrukturen f{\"u}r die Entwicklung eines Protein-Protein- Interaktionsinhibitors verfolgt. Als Zielstruktur wurde die SHP-Bindestelle in der N-Dom{\"a}ne gew{\"a}hlt. Die Identifizierung von Liganden erfolgte sowohl durch computergest{\"u}tzte Methoden (insbesondere virtuelles Screening und Molekulardynamik-Simulationen) als auch experimentell durch biophysikalische Techniken (wie Biolayer-Interferometrie, R{\"o}ntgenstrukturanalyse und ligandbasierte NMR-Techniken). Die Grundlage des computerbasierten Designs stellte eine Analyse der bekannten Kristallstrukturen der p97-Komplexe mit den SHP-Motiven der Kofaktoren UFD1 und Derlin-1 dar. Dar{\"u}ber hinaus dienten Molekulardynamik-Simulationen der Analyse der Wassereigenschaften innerhalb der SHP-Bindestelle. Darauf aufbauend wurden verschiedene Pharmakophormodelle entwickelt, die die Grundlage des im Anschluss durchgef{\"u}hrten virtuellen Screenings und Dockings bildeten. Anhand der Ergebnisse von Molekulardynamik-Simulationen wurden zehn Verbindungen f{\"u}r die experimentelle Validierung ausgew{\"a}hlt. Hiervon konnten zwei Fragmente in STD-NMR- und Biolayer-Interferometrie-Experimenten als Liganden best{\"a}tigt werden. In einem parallel durchgef{\"u}hrten biophysikalischen Fragmentscreening mittels Biolayer-Interferometrie wurden unter mehr als 650 Verbindungen 22 identifiziert, die an die N-Dom{\"a}ne binden. 15 dieser Fragmente wurden durch einen orthogonalen STD-NMR-Assay best{\"a}tigt. F{\"u}nf dieser Verbindungen zeigten Affinit{\"a}ten mit KD-Werten kleiner 500μMund g{\"u}nstigen Ligandeffizienzen. Des Weiteren konnte die Bindungskinetik und Affinit{\"a}t des in der Literatur als p97-Inhibitor berichteten Naturstoffes Xanthohumol bestimmt und eine Bindung an die N-Dom{\"a}ne best{\"a}tigt werden. Zur Identifizierung m{\"o}glicher Bindestellen dieser f{\"u}nf Fragmente wurden mixed-solvent Molekulardynamik-Simulationen durchgef{\"u}hrt. Diese ergaben, dass alle Verbindungen die SHP-Bindestelle in der N-Dom{\"a}ne adressieren. Die Regionen fielen mit hot spots der Kofaktorwechselwirkungen zusammen und stellen somit m{\"o}gliche Ankerpunkte f{\"u}r die Weiterentwicklung dar. F{\"u}r zwei Fragmente konnten die postulierten Bindestellen mittels R{\"o}ntgenstrukturanalyse bzw. STD-NMR-Messungen an p97-Alanin-Mutanten best{\"a}tigt werden. Die erhaltene R{\"o}ntgenstruktur ist die erste p97-Struktur, die ein gebundenes Fragment an der N-Dom{\"a}ne zeigt.}, subject = {Arzneimitteldesign}, language = {de} }