@unpublished{StennettMattockVollertetal.2018, author = {Stennett, Tom and Mattock, James and Vollert, Ivonne and Vargas, Alfredo and Braunschweig, Holger}, title = {Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene}, series = {Angewandte Chemie, International Edition}, volume = {57}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201800671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160258}, pages = {4098-4102}, year = {2018}, abstract = {Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene.}, language = {en} } @article{EwingDellermannAngelWongetal.2020, author = {Ewing, William C. and Dellermann, Theresa and Angel Wong, Y. T. and Mattock, James D. and Vargas, Alfredo and Bryce, David L. and Dewhurst, Rian D. and Braunschweig, Holger}, title = {\(\pi\)-Complexes of Diborynes with Main Group Atoms}, series = {Chemistry - An Asian Journal}, volume = {15}, journal = {Chemistry - An Asian Journal}, number = {10}, doi = {10.1002/asia.202000185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214677}, pages = {1553 -- 1557}, year = {2020}, abstract = {We present herein an in-depth study of complexes in which a molecule containing a boron-boron triple bond is bound to tellurate cations. The analysis allows the description of these salts as true π complexes between the B-B triple bond and the tellurium center. These complexes thus extend the well-known Dewar-Chatt-Duncanson model of bonding to compounds made up solely of p block elements. Structural, spectroscopic and computational evidence is offered to argue that a set of recently reported heterocycles consisting of phenyltellurium cations complexed to diborynes bear all the hallmarks of \(\pi\)-complexes in the \(\pi\)-complex/metallacycle continuum envisioned by Joseph Chatt. Described as such, these compounds are unique in representing the extreme of a metal-free continuum with conventional unsaturated three-membered rings (cyclopropenes, azirenes, borirenes) occupying the opposite end.}, language = {en} } @article{BruecknerHessStennettetal.2021, author = {Br{\"u}ckner, Tobias and Heß, Merlin and Stennett, Tom E. and Rempel, Anna and Braunschweig, Holger}, title = {Synthesis of Boron Analogues of Enamines via Hydroamination of a Boron-Boron Triple Bond}, series = {Angewandte Chemie, International Edition}, volume = {60}, journal = {Angewandte Chemie, International Edition}, number = {2}, doi = {10.1002/anie.202012101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240669}, pages = {736-741}, year = {2021}, abstract = {An N-heterocyclic-carbene-stabilized diboryne undergoes rapid, high-yielding and catalyst-free hydroamina- tion reactions with primary amines, yielding 1-amino-2-hydro- diborenes, which can be considered boron analogues of enamines. The electronics of the organic substituent at nitrogen influence the structure and further reactivity of the diborene product. With electron-rich anilines, a second hydroamination can occur at the diborene to generate 1,1-diamino-2,2-dihy- drodiboranes. With isopropylamine, the electronic influence of the alkyl substituent upon the diborene leads to an unprece- dented boron-mediated intramolecular N-dearylation reaction of an N-heterocyclic carbene unit.}, language = {en} }