@phdthesis{Slobodskyy2006, author = {Slobodskyy, Taras}, title = {Semimagnetic heterostructures for spintronics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21011}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {F{\"u}r zuk{\"u}nftige Technologien ist die Erforschung von der verwendeten Teilchen n{\"o}tig. Spintronik ist ein modernes Gebiet der Physik, welches neben der Ladung auch die Spineigenschaften als zus¨atzlichen Freiheitsgrad nutzbar macht. Der "conductivity mismatch" stellt ein fundamentales Problem f{\"u}r elektrische Spininjektion aus einem ferromagnetischem Metal in einen diffusiven Halbleiter dar. Daher m{\"u}ssen andere Methoden f{\"u}r die Injektion spin-polarisierter Ladungstr{\"a}ger benutzt werden. Mit einem Tunnelkontakt ist es m{\"o}glich, eine hoch spin-polarisierte, Raumtemperatur Tunnel-Injektion zu erzielen. Wir benutzten einen neuen Ansatz und verwendeten magnetische RTDs zur Spinmanipulation. In dieser Arbeit wurden die Eigenschaften von magnetischen, resonanten Tunneldioden (RTDs) aus rheinen II-VI-Halbleitern in ihrer Verwendung f{\"u}r die Spintronik beschrieben. Wachstumsbedingungen wurden optimiert, um das Peak-to-Valley-Verh{\"a}ltnis zu vergr{\"o}ßern. Das Design der RTDs wurde optimiert, um spinbezogene Transporteffekte beobachten zu k{\"o}nen. Mit einem externen Magnetfeld war Spinmanipulation m{\"o}glich. Selbstorganisierte CdSe Quanten-Strukturen wurden hergestelt und mit optischen Techniken untersucht. Sie w{\"u}rden in (Zn,Be)Se Tunnelbarrieren eingebettet, so dass ihre Eigenschaften durch resonantes Tunneln zug{\"a}nglich wurden.}, subject = {Heterostruktur-Bauelement}, language = {en} } @phdthesis{Mueller2009, author = {M{\"u}ller, Christian Robert}, title = {Nanoelektronische Feldeffekt-Transistoren und Quantenpunktspeicher auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-39948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit Elektronentransport in nanostrukturierten Bauelementen auf Halbleiterbasis, wobei im Speziellen deren Transistor- und Speichereigenschaften untersucht werden. Grundlage f{\"u}r die Bauelemente stellt eine modulationsdotierte GaAs/AlGaAs Heterostruktur dar, die mittels Elektronenstrahllithographie und nasschemischen {\"A}tzverfahren strukturiert wird. Auf Grund der Bandverbiegung bildet sich in der N{\"a}he des Hetero{\"u}bergangs ein zweidimensionales Elektronengas (2DEG) aus, das als leitf{\"a}hige Schicht in den Strukturen dient. Im Rahmen der Arbeit werden die Transporteigenschaften f{\"u}r unterschiedliche Bauelementdesigns untersucht, wobei die laterale Ausdehnung der Bauelemente wenige 10 nm betr{\"a}gt. Die Charakterisierung des Elektronentransports erfolgt sowohl im linearen als auch nichtlinearen Transportregime f{\"u}r tiefe Temperaturen (T = 4.2 K) bis hin zu Raumtemperatur. Das erste experimentelle Kapitel besch{\"a}ftigt sich mit dem Entwurf und der Charakterisierung von statischen Speicherzellen mit integriertem Floating Gate. Bei den hierf{\"u}r hergestellten Bauelementen befindet sich eine Schicht selbstorganisierter Quantenpunkte (QDs) in direkter N{\"a}he zum 2DEG. Der Abstand zwischen 2DEG und QDs ist kleiner als die Abschirml{\"a}nge im Halbleitermaterial, wodurch die QDs als Floating Gate dienen und Informationen elektrisch gespeichert werden k{\"o}nnen. Die Speicherzellen wurden in Form von Quantendraht-Transistoren (QWTs) und Y-Schaltern (YBSs) realisiert und bez{\"u}glich der Speicherf{\"a}higkeit der QDs sowohl bei tiefen Temperaturen als auch bei Raumtemperatur untersucht. Im zweiten experimentellen Kapitel dieser Arbeit wird ein neues, auf dem Feldeffekt beruhendes, Transistordesign vorgestellt. Die hierf{\"u}r hergestellten Heterostrukturen besitzen ein 2DEG, das sich zwischen 33 nm und 80 nm unterhalb der Oberfl{\"a}che der Heterostruktur befindet. Mittels in die Oberfl{\"a}che der Heterostruktur ge{\"a}tzter Gr{\"a}ben wird eine Isolation zwischen den leitf{\"a}higen Regionen der Bauelemente geschaffen. Das einfache Design der sogenannten Three-Terminal Junctions (TTJs), in Verbindung mit dem oberfl{\"a}chennahen 2DEG, erm{\"o}glicht die monolithische Realisierung von integrierten logischen Gattern. Durch eine ausf{\"u}hrliche Betrachtung des Transistorverhaltens der TTJs k{\"o}nnen sowohl Subthreshold Swings kleiner als das thermische Limit klassischer Feldeffekt-Transistoren als auch Hochfrequenzfunktionalit{\"a}t demonstriert werden.}, subject = {Galliumarsenid}, language = {de} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} }